Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biotechnol ; 22(1): 30, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303174

RESUMEN

BACKGROUND: An important conceptual advance in health and the environment has been recognized that enzymes play a key role in the green processing industries. Of particular interest, chitosanase is beneficial for recycling the chitosan resource and producing chitosan oligosaccharides. Also, chitosan gene expression and molecular characterization will promote understanding of the biological function of bacterial chitosanase as well as explore chitosanase for utilizing chitosan resources. RESULTS: A chitosanase-producing bacterium TY24 was isolated and identified as Bacillus cereus. Moreover, the chitosanase gene was cloned and expressed in Escherichia coli. Sequence analysis reveals that the recombinant chitosanase (CHOE) belongs to the glycoside hydrolases 8 family. The purified CHOE has a molecular weight of about 48 kDa and the specific activity of 1150 U/mg. The optimal pH and temperature of CHOE were 5.5 and 65 °C, respectively. The enzyme was observed stable at the pH range of 4.5-7.5 and the temperature range of 30-65 °C. Especially, the half-life of CHOE at 65 °C was 161 min. Additionally, the activity of CHOE was remarkably enhanced in the presence of Mn2+, Cu2+, Mg2+ and K+, beside Ca2+ at 5 mM. Especially, the activity of CHOE was enhanced to more than 120% in the presence of 1% of various surfactants. CHOE exhibited the highest substrate specificity toward colloid chitosan. CONCLUSION: A bacterial chitosanase was cloned from B. cereus and successfully expressed in E. coli (BL21) DE3. The recombinant enzyme displayed good stability under acid pH and high-temperature conditions.


Asunto(s)
Bacillus cereus , Quitosano , Bacillus cereus/genética , Bacillus cereus/metabolismo , Quitosano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/química , Clonación Molecular , Concentración de Iones de Hidrógeno
2.
Neoplasma ; 68(6): 1301-1309, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34648299

RESUMEN

This study aimed to measure the expression of SAA2 in plasma and to assess its diagnostic efficacy as a biomarker for non-small cell lung cancer (NSCLC). The gene expression of SAA2 in NSCLC was analyzed based on a database. Then, SAA2 expression was detected by immunohistochemistry in lung tissue and by enzyme-linked immunosorbent assay in 90 patients with NSCLC and 61 normal controls. Finally, the diagnostic performance was assessed in terms of accuracy, sensitivity, and specificity. At the gene and protein levels, the SAA2 expression was significantly higher in the NSCLC group than in the control group (p<0.01). It was higher in lung squamous carcinoma than in lung adenocarcinoma and in males than in females, and this trend was also observed in the lung squamous carcinoma group. Of note, the expression of SAA2 increased with increasing disease stage. Receiver operating characteristic (ROC) curve analysis revealed that the sensitivity of SAA2 was 83.61%, the specificity was 91.11%, and the area under the curve (AUC) was 0.9252. Its accuracy was 68.89%, which was higher than that of other conventional diagnostic biomarkers, and the combined application can effectively improve the diagnostic efficiency. Based on the results, SAA2 expression was positively correlated with the disease stage of NSCLC. Notably, SAA2 is more concerning in male patients with lung squamous carcinoma, and it can help in the screening and diagnosis of NSCLC. SAA2 may represent a novel diagnostic biomarker in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Área Bajo la Curva , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Masculino , Curva ROC , Proteína Amiloide A Sérica/genética
3.
J Cell Sci ; 131(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29760279

RESUMEN

Dysregulation of the homeostatic balance of histone H3 di- and tri-methyl lysine 27 (H3K27me2/3) levels caused by the mis-sense mutation of histone H3 (H3K27M) is reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in patients with diffuse intrinsic pontine glioma (DIPG), dramatically attenuated the presence of 53BP1 (also known as TP53BP1) foci and the capability of non-homologous end joining (NHEJ) in human dermal fibroblasts. H3.1K27M mutant cells showed increased rates of genomic insertions/deletions and copy number variations, as well as an increase in p53-dependent apoptosis. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player in the choice of DNA repair pathway. H3.1K27M triggered the accumulation of FANCD2 on chromatin, suggesting an interaction between H3.1K27M and FANCD2. Interestingly, knockdown of FANCD2 in H3.1K27M cells recovered the number of 53BP1-positive foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the endogenous regulation of the H3.1K27M mutant in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Histonas/metabolismo , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/metabolismo , Línea Celular , Cromatina/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Fibroblastos , Inestabilidad Genómica , Glioma/genética , Glioma/metabolismo , Células HEK293 , Histonas/genética , Humanos , Metilación , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
4.
BMC Dev Biol ; 18(1): 20, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458702

RESUMEN

BACKGROUND: Histone modifications are critical in regulating neuronal processes. However, the impacts of individual histone modifications on learning and memory are elusive. Here, we investigated the contributions of histone H3 lysine modifications to learning and memory in Drosophila by using histone lysine-to-alanine mutants. RESULTS: Behavioural analysis indicated that compared to the H3WT group, mutants overexpressing H3K23A displayed impaired courtship learning. Chromatin immunoprecipitation analysis of H3K23A mutants showed that H3K23 acetylation (H3K23ac) levels were decreased on learning-related genes. Knockdown of CREB-binding protein (CBP) decreased H3K23ac levels, attenuated the expression of learning-related genes, led to a courtship learning defect and altered development of the mushroom bodies. A decline in courtship learning ability was observed in both larvae and adult treatments with ICG-001. Furthermore, treatment of Drosophila overexpressing mutated H3K23A with a CBP inhibitor did not aggravate the learning defect. CONCLUSIONS: H3K23ac, catalysed by the acetyltransferases dCBP, contributes to Drosophila learning, likely by controlling the expression of specific genes. This is a novel epigenetic regulatory mechanism underlying neuronal behaviours.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Cortejo , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histonas/genética , Aprendizaje , Masculino , Mutación , Neuronas/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(45): 13988-93, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26508632

RESUMEN

Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Drosophila/genética , Epigénesis Genética/fisiología , Heterocromatina/fisiología , Aprendizaje/fisiología , Animales , Secuencia de Bases , Western Blotting , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina , Drosophila/fisiología , Heterocromatina/genética , Inmunoprecipitación , Datos de Secuencia Molecular , Octoxinol , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/anatomía & histología , Glándulas Salivales/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
6.
J Cell Sci ; 125(Pt 22): 5369-78, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956542

RESUMEN

Core histone modifications play an important role in chromatin remodeling and transcriptional regulation. Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the organ overgrowth induced by overexpression of insulin receptor (InR), phosphoinositide 3-kinase (PI3K) or S6 kinase (S6K), and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the overexpression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Acetilación , Animales , Tamaño Corporal , Tamaño de la Célula , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Femenino , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/deficiencia , Insulina/metabolismo , Masculino , Proteínas Nucleares/metabolismo , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Transcripción Genética
7.
Org Lett ; 26(36): 7701-7706, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39230191

RESUMEN

We report a simple and convenient N-terminal thiazolidine (Thz) deprotection strategy and its application in one-pot multisegment ligation. In this strategy, O-benzylhydroxylamine (O-BHA) is used to efficiently and rapidly convert Thz into N-terminal cysteine. O-BHA can be easily separated from the ligation buffer by organic solvent extraction, avoiding the degradation of the peptide thioester by O-BHA. The utility of the O-BHA-based one-pot ligation strategy has been demonstrated in the assembly of CC chemokine ligand-2.

8.
J Biol Chem ; 286(11): 9020-30, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21205821

RESUMEN

The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Proteínas de Drosophila/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Morfogénesis/fisiología , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/genética , Enzimas Ubiquitina-Conjugadoras/genética
9.
Huan Jing Ke Xue ; 40(5): 2094-2100, 2019 May 08.
Artículo en Zh | MEDLINE | ID: mdl-31087845

RESUMEN

To learn about the status of antibiotic contamination and their ecological risks in Chinese surface-water environments, the risk quotient (RQ) and joint risk quotient (RQSUM) methods were applied to assess the ecological risks of five typical surface-water environments in China during the flood season. The results showed that the main types of antibiotic contamination in the five regions were sulfamethoxazole (SMX), sulfamethazine (SM), erythromycin (ETM), roxithromycin (RTM), tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), and ofloxacin (OFL). Among eight types of antibiotic contamination, sulfamethoxazole (SMX) and erythromycin (ETM) occupied a dominant position. The contribution rate of SMX in the Yangtze River Delta and Chaohu Basin was 91.1% and 98.5%, respectively. Meanwhile, the contribution rates of ETM in Jianghan Plain, Pearl River Delta, and Yellow River Delta were 94.4%, 81.8%, and 60%, respectively. Based on the joint risk quotients (RQSUM), the order of ecological risks in the research areas was:Jianghan Plain (20.204) > Yangtze River Delta (8.769) > Chaohu Basin (2.692) > Yellow River Delta (1.943) > Pearl River Delta (1.222).


Asunto(s)
Antibacterianos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , China , Medición de Riesgo , Ríos
10.
Nat Commun ; 6: 8856, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26581759

RESUMEN

Epigenetics plays critical roles in controlling stem cell self-renewal and differentiation. Histone H1 is one of the most critical chromatin regulators, but its role in adult stem cell regulation remains unclear. Here we report that H1 is intrinsically required in the regulation of germline stem cells (GSCs) in the Drosophila ovary. The loss of H1 from GSCs causes their premature differentiation through activation of the key GSC differentiation factor bam. Interestingly, the acetylated H4 lysine 16 (H4K16ac) is selectively augmented in the H1-depleted GSCs. Furthermore, overexpression of mof reduces H1 association on chromatin. In contrast, the knocking down of mof significantly rescues the GSC loss phenotype. Taken together, these results suggest that H1 functions intrinsically to promote GSC self-renewal by antagonizing MOF function. Since H1 and H4K16 acetylation are highly conserved from fly to human, the findings from this study might be applicable to stem cells in other systems.


Asunto(s)
Autorrenovación de las Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Epigénesis Genética , Femenino , Células Germinativas/citología , Histonas/química , Histonas/genética , Masculino , Ovario/química , Ovario/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda