RESUMEN
Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Quirópteros , Inflamasomas , Ribonucleoproteínas , Virosis , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Quirópteros/inmunología , COVID-19 , Inflamasomas/inmunología , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Virosis/inmunología , Fenómenos Fisiológicos de los VirusRESUMEN
CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.
Asunto(s)
Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Edición Génica , Holoenzimas , Complejos Multiproteicos , ARN Guía de Sistemas CRISPR-Cas , Transposasas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Edición Génica/métodos , Transposasas/química , Transposasas/metabolismo , Transposasas/ultraestructura , ARN Guía de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Microscopía por Crioelectrón , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructuraRESUMEN
Whole-genome bisulfite sequencing (BS-Seq) measures cytosine methylation changes at single-base resolution and can be used to profile cell-free DNA (cfDNA). In plasma, ultrashort single-stranded cfDNA (uscfDNA, â¼50 nt) has been identified together with 167 bp double-stranded mononucleosomal cell-free DNA (mncfDNA). However, the methylation profile of uscfDNA has not been described. Conventional BS-Seq workflows may not be helpful because bisulfite conversion degrades larger DNA into smaller fragments, leading to erroneous categorization as uscfDNA. We describe the '5mCAdpBS-Seq' workflow in which pre-methylated 5mC (5-methylcytosine) single-stranded adapters are ligated to heat-denatured cfDNA before bisulfite conversion. This method retains only DNA fragments that are unaltered by bisulfite treatment, resulting in less biased uscfDNA methylation analysis. Using 5mCAdpBS-Seq, uscfDNA had lower levels of DNA methylation (â¼15%) compared to mncfDNA and was enriched in promoters and CpG islands. Hypomethylated uscfDNA fragments were enriched in upstream transcription start sites (TSSs), and the intensity of enrichment was correlated with expressed genes of hemopoietic cells. Using tissue-of-origin deconvolution, we inferred that uscfDNA is derived primarily from eosinophils, neutrophils, and monocytes. As proof-of-principle, we show that characteristics of the methylation profile of uscfDNA can distinguish non-small cell lung carcinoma from non-cancer samples. The 5mCAdpBS-Seq workflow is recommended for any cfDNA methylation-based investigations.
Asunto(s)
5-Metilcitosina , Ácidos Nucleicos Libres de Células , Islas de CpG , Metilación de ADN , ADN de Cadena Simple , Humanos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/sangre , 5-Metilcitosina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Sulfitos/química , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.
Asunto(s)
Aprendizaje por Laberinto , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Memoria Espacial , Animales , Memoria Espacial/fisiología , Ratones , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Aprendizaje por Laberinto/fisiología , Masculino , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Serina-Treonina Quinasas , Proteínas Inmediatas-PrecocesRESUMEN
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cianobacterias , Elementos Transponibles de ADN , Transposasas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Cianobacterias/enzimología , Cianobacterias/genética , Proteínas de Unión al ADN/metabolismo , Transposasas/genética , Transposasas/metabolismoRESUMEN
As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha, which is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the guide strand small RNA recognition middle domain, MID domain, of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RNA-inducing silencing complex (RISC) activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.
Asunto(s)
Proteínas Argonautas , Regulación de la Expresión Génica de las Plantas , Marchantia , MicroARNs , Proteínas de Plantas , Marchantia/genética , Marchantia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aclimatación/genética , Calor , ARN de Planta/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Edición Génica , Arabidopsis/genética , Arabidopsis/metabolismoRESUMEN
The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, which can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Marchantia , MicroARNs , ARN Interferente Pequeño , Marchantia/genética , MicroARNs/genética , MicroARNs/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Filogenia , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter, plays a crucial role in regulating bile acid levels and influencing the risk of HBV infection. Genetic variations in the SLC10A1 gene, which encodes NTCP, affect these functions. However, the impact of SLC10A1 gene variants on the metabolic and biochemical traits remained unclear. We aimed to investigate the association of SLC10A1 gene variants with the clinical and biochemical parameters, and the risk of different HBV infection statuses and gallstone disease in the Taiwanese population. Genotyping data from 117,679 Taiwan Biobank participants were analyzed using the Axiom genome-wide CHB arrays. Regional-plot association analysis demonstrated genome-wide significant association between the SLC10A1 rs2296651 genotypes and lipid profile, gamma glutamyl transferase (γGT) level and anti-HBc-positivity. Genotype-phenotype association analyses revealed significantly lower total cholesterol, low-density lipoprotein (LDL) cholesterol and uric acid levels, a higher γGT level and a higher gallstone incidence in rare rs2296651-A allele carrier. Participants with the rs2296651 AA-genotype exhibited significantly lower rates of anti-HBc-positivity and HBsAg-positivity. Compared to those with the GG-genotype, individuals with non-GG-genotypes had reduced risks for various HBV infection statuses: the AA-genotype showed substantially lower risks, while the GA-genotype demonstrated modestly lower risks. Predictive tools also suggested that the rs2296651 variant potentially induced protein damage and pathogenic effects. In conclusion, our data revealed pleiotropic effects of the SLC10A1 rs2296651 genotypes on the levels of biochemical traits and the risk of HBV infection and gallstone disease. This confirms SLC10A1's versatility and implicates its genotypes in predicting both biochemical traits and disease susceptibility.
Asunto(s)
Cálculos Biliares , Predisposición Genética a la Enfermedad , Virus de la Hepatitis B , Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Polimorfismo de Nucleótido Simple , Simportadores , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Cálculos Biliares/genética , Femenino , Simportadores/genética , Masculino , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Persona de Mediana Edad , Taiwán/epidemiología , Adulto , Genotipo , Estudio de Asociación del Genoma Completo , Estudios de Asociación Genética , Factores de RiesgoRESUMEN
In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2 platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1â dB bandwidth of 300â nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.
RESUMEN
This work demonstrated the first synthetic application of direct C-H olefinations in the step-saving preparation of various hole-transporting materials (HTM) for efficient perovskite solar cells (PSC). Cross-dehydrogenative couplings of naphthodithiophene (NDT) with vinyl arenes under palladium-catalysis facilely generated various new oligo(hetero)aryls with internal alkenes. Reaction conditions were optimized, which gave the product isolated yields of up to 71 % with high (E)-stereoselectivity. These readily accessible NDT core-based small molecules involving olefin as π-spacers displayed immediate power conversion efficiencies of up to 17.2 % without a device oxidation process that is required for the commercially available spiro-OMeTAD and most other existing HTMs while fabricated in corresponding PSC devices.
RESUMEN
NEDDylation is a type of protein post-translational modification that has high similarity to ubiquitination. UBE1C encodes NEDDylation E1 enzyme, locates at chromatin region 3p14.1 and shows high gene dosage amplification frequency in both Asian and Caucasian lung cancer patients. However, its NEDDylation substrates and roles in tumorigenesis remain elucidated. In this study, we aim to investigate the oncogenic role of UBE1C and its involvement in how NEDDylation regulates p53 in lung cancer. We found that UBE1C mRNA overexpression and DNA amplification in most of the lung cell lines and cancer patients. Patients with UBE1C overexpression showed poor prognosis. Moreover, we demonstrated that overexpression of UBE1C and NEDD8, a NEDDylation moiety, resulted in the p53 NEDDylation with inhibition of p53 acetylation at K373 residue. Importantly, UBE1C-mediated NEDDylation downregulated the transcriptional activity of p53 by inhibiting p53 ability to target promoter regions of its downstream transcription targets, consequently inhibiting the promoter activities and the expression of mRNA and protein of the p53 downstream genes including p21 and PTEN. In addition, UBE1C and NEDD8 overexpression promoted migration, invasion, and proliferation of lung cancer cells. Our findings suggest that UBE1C acts as an oncogene with prognostic potential and highlight a potential role of UBE1C-mediated NEDDylation in downregulation of p53 transcriptional activity in lung cancer.
Asunto(s)
Neoplasias Pulmonares , Proteína p53 Supresora de Tumor , Enzimas Activadoras de Ubiquitina , Humanos , Acetilación , Carcinogénesis , Neoplasias Pulmonares/genética , Oncogenes , Proteína p53 Supresora de Tumor/genética , Enzimas Activadoras de Ubiquitina/genéticaRESUMEN
BACKGROUND: Stromal fibrosis is highly associated with therapeutic resistance and poor survival in esophageal squamous cell carcinoma (ESCC) patients. Low expression of plasma gelsolin (pGSN), a serum abundant protein, has been found to correlate with inflammation and fibrosis. Here, we evaluated pGSN expression in patients with different stages of cancer and therapeutic responses, and delineated the molecular mechanisms involved to gain insight into therapeutic strategies for ESCC. METHODS: Circulating pGSN level in ESCC patients was determined by enzyme-linked immunosorbent assay analysis, and the tissue microarray of tumors was analyzed by immunohistochemistry staining. Cell-based studies were performed to investigate cancer behaviors and molecular mechanisms, and mouse models were used to examine the pGSN-induced tumor suppressive effects in vivo. RESULTS: Circulating pGSN expression is distinctively decreased during ESCC progression, and low pGSN expression correlates with poor therapeutic responses and poor survival. Methylation-specific PCR analysis confirmed that decreased pGSN expression is partly attributed to the hypermethylation of the GSN promoter, the gene encoding pGSN. Importantly, cell-based immunoprecipitation and protein stability assays demonstrated that pGSN competes with oncogenic tenascin-C (TNC) for the binding and degradation of integrin αvß3, revealing that decreased pGSN expression leads to the promotion of oncogenic signaling transduction in cancer cells and fibroblasts. Furthermore, overexpression of pGSN caused the attenuation of TNC expression and inactivation of cancer-associated fibroblast (CAF), thereby leading to tumor growth inhibition in mice. CONCLUSIONS: Our results demonstrated that GSN methylation causes decreased secretion of pGSN, leading to integrin dysregulation, oncogenic TNC activation, and CAF formation. These findings highlight the role of pGSN in therapeutic resistance and the fibrotic tumor microenvironment of ESCC.
Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Gelsolina , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Esófago/metabolismo , Gelsolina/genética , Gelsolina/metabolismo , Ratones , Neoplasias Esofágicas/metabolismo , Animales , Masculino , Femenino , Quimioradioterapia/métodos , Persona de Mediana Edad , Línea Celular Tumoral , Resistencia a Antineoplásicos , FibrosisRESUMEN
BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.
Asunto(s)
COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Vacunas contra la COVID-19 , Dasatinib , Inmunoglobulina G/metabolismo , Autoanticuerpos/metabolismo , Glicoproteína de la Espiga del Coronavirus , Unión ProteicaRESUMEN
AIM: To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression. MATERIALS AND METHODS: A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age- and gender-specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time-varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression. RESULTS: Of the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (-2.0 ± 0.9 vs. -1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow-up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41-1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76-3.11, all P < .001). CONCLUSIONS: In addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression.
Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Estudios de Cohortes , Tasa de Filtración Glomerular , Estudios Retrospectivos , Factores de Riesgo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/complicaciones , Albuminuria/complicaciones , Glomérulos RenalesRESUMEN
BACKGROUND: The eradication rates of sequential therapy are high in clinical trials; however, the adherence for follow-up or the patient population in a real-world setting might be different from those in trails. This study investigates the effectiveness of sequential therapy in a real-world setting and the factors that lead to treatment failure. MATERIALS AND METHODS: In this retrospective study, patients receiving sequential therapy as a first-line anti-Helicobacter pylori (H. pylori) treatment in a real-world setting were reviewed. The age adjusted Charlson Comorbidity Index (age-CCI) and baseline variety of medications were reviewed to determine factors correlated with nonadherence for post-treatment testing and H. pylori eradication failure. RESULTS: A total of 1053 patients were reviewed. A total of 579 patients receiving sequential therapy were included in the analyses. Among them, 462 received post-treatment testing and were placed into the follow-up group. Thus, the post-treatment testing rate was 79.8%. Stroke was an independent factor of nonadherence for post-treatment testing. In the follow-up group, the eradication failure rate was 8.2%. Female sex (odds ratio [OR] 2.41 [95% CI 1.16-5.03], p = 0.02) and age-CCI ≥2 (OR 3.16 [1.05-9.48], p = 0.04) were independent factors of H. pylori eradication failure. The eradication failure rates were 14.4%, 7.8%, 7.1%, and 3.1% for the females with age-CCI ≥2, females with age-CCI <2, males with age-CCI ≥2, and males with age-CCI <2 subgroups, respectively (p = 0.027). CONCLUSIONS: In a real-world setting, the adherence rate of post-treatment testing for sequential therapy as a first-line anti-H. pylori treatment was found to be suboptimal. Female sex and age-CCI ≥2 were independent factors of eradication failure.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Masculino , Humanos , Femenino , Antibacterianos , Infecciones por Helicobacter/tratamiento farmacológico , Estudios Retrospectivos , Inhibidores de la Bomba de Protones/uso terapéutico , Quimioterapia Combinada , Factores de Riesgo , Resultado del Tratamiento , Claritromicina/uso terapéutico , AmoxicilinaRESUMEN
BACKGROUND: Endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) is highly accurate for diagnosing pancreatic mass. However, making diagnosis is challenging in 5-20% of patients. This study investigated the challenging features associated with reduced diagnostic performance in EUS-FNB and potential rescue methods that can improve the diagnostic rate. METHODS: This single-center retrospective study included patients with solid pancreatic tumors who underwent EUS-FNB between January 1, 2019, and December 12, 2021. Patients without a computed tomography (CT) scan or definite diagnosis were excluded. Challenging features were features that reduced diagnostic accuracy in EUS-FNB, as determined through multivariate analysis. Rescue methods were methods that assisted operators in assessing lesions in patients with challenging features. RESULTS: Of 332 enrolled patients, an accurate diagnosis obtained using EUS-FNB was achieved in 286 (86.1%). Univariable analysis revealed that the diagnostic accuracy was lower in cases of pancreatic tumors with isoattenuation in CT images (77.3% vs. 89.8%, odds ratio [OR]: 0.39, p = 0.003), an ill-defined margin on EUS (61.2% vs. 92.5%, OR: 0.13, p < 0.001), or tumor size < 20 mm (65.5% vs. 88.1%, OR: 0.26, p = 0.002). However, only ill-defined margins on EUS (OR: 0.14, p < 0.001) and tumor size < 20 mm (OR: 0.25, p = 0.005) were independent predictors of inconclusive EUS-FNB in the multivariate analysis. The use of contrast (OR: 4.46, p = 0.026) and a highly experienced endosonographer (> 5cases/month; OR: 3.25, p = 0.034) improved diagnostic performance in difficult cases. CONCLUSIONS: Pancreatic tumors with ill-defined tumor margins on EUS or size < 20 mm are challenging features in EUS-FNB. The use of contrast and a highly experienced endosonographer can improve diagnostic performance in difficult cases.
RESUMEN
BACKGROUND: Chronic hepatitis C (CHC) increases the risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). This nationwide cohort study assessed the effectiveness of viral eradication of CHC. METHODS: The Taiwanese chronic hepatitis C cohort and Taiwan hepatitis C virus (HCV) registry are nationwide HCV registry cohorts incorporating data from 23 and 53 hospitals in Taiwan, respectively. This study included 27,577 individuals from these cohorts that were given a diagnosis of CHC and with data linked to the Taiwan National Health Insurance Research Database. Patients received either pegylated interferon and ribavirin or direct-acting antiviral agent therapy for > 4 weeks for new-onset LC and liver-related events. RESULTS: Among the 27,577 analyzed patients, 25,461 (92.3%) achieved sustained virologic response (SVR). The mean follow-up duration was 51.2 ± 48.4 months, totaling 118,567 person-years. In the multivariable Cox proportional hazard analysis, the hazard ratio (HR) for incident HCC was 1.39 (95% confidence interval [CI]: 1.00-1.95, p = 0.052) among noncirrhotic patients without SVR compared with those with SVR and 1.82 (95% CI 1.34-2.48) among cirrhotic patients without SVR. The HR for liver-related events, including HCC and decompensated LC, was 1.70 (95% CI 1.30-2.24) among cirrhotic patients without SVR. Patients with SVR had a lower 10-year cumulative incidence of new-onset HCC than those without SVR did (21.7 vs. 38.7% in patients with LC, p < 0.001; 6.0 vs. 18.4% in patients without LC, p < 0.001). CONCLUSION: HCV eradication reduced the incidence of HCC in patients with and without LC and reduced the incidence of liver-related events in patients with LC.
Asunto(s)
Antivirales , Carcinoma Hepatocelular , Hepatitis C Crónica , Cirrosis Hepática , Neoplasias Hepáticas , Respuesta Virológica Sostenida , Humanos , Taiwán/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/epidemiología , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/prevención & control , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/prevención & control , Carcinoma Hepatocelular/virología , Cirrosis Hepática/epidemiología , Cirrosis Hepática/virología , Adulto , Anciano , Ribavirina/uso terapéutico , Estudios de Cohortes , Sistema de Registros , Incidencia , Quimioterapia Combinada , Modelos de Riesgos Proporcionales , Resultado del TratamientoRESUMEN
NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.
Asunto(s)
Musa , Neumonía , Ratones , Humanos , Animales , FN-kappa B , Poli I-C/farmacología , Poli I-C/uso terapéutico , Interleucina-10 , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Quimiocinas , Antiinflamatorios/uso terapéuticoRESUMEN
In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.
Asunto(s)
Perciformes , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Maduración Sexual , Gónadas/metabolismo , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Peces/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Encéfalo/metabolismo , Expresión GénicaRESUMEN
PURPOSE: Pediatric hydrocephalus is the most common cause of surgically treatable neurological disease in children. Controversies exist whether endoscopic third ventriculostomy (ETV) or cerebrospinal fluid (CSF) shunt placement is the most appropriate treatment for pediatric hydrocephalus. This study aimed to compare the risk of re-operation and death between the two procedures. METHODS: We performed a retrospective population-based cohort study and included patients younger than 20-years-old who underwent CSF shunt or ETV for hydrocephalus from the Taiwan National Health Insurance Research Database. RESULTS: A total of 3,555 pediatric patients from 2004 to 2017 were selected, including 2,340 (65.8%) patients that received CSF shunt placement and 1215 (34.2%) patients that underwent ETV. The incidence of all-cause death was 3.31 per 100 person-year for CSF shunt group and 2.52 per 100 person-year for ETV group, with an adjusted hazard ratio (HR) of 0.79 (95% confidence interval [CI] = 0.66-0.94, p = 0.009). The cumulative incidence competing risk for reoperation was 31.2% for the CSF shunt group and 26.4% for the ETV group, with an adjusted subdistribution HR of 0.82 (95% CI = 0.70-0.96, p = 0.015). Subgroup analysis showed that ETV was beneficial for hydrocephalus coexisting with brain or spinal tumor, central nervous system infection, and intracranial hemorrhage. CONCLUSION: Our data indicates ETV is a better operative procedure for pediatric hydrocephalus when advanced surgical techniques and instruments are available.