Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249359

RESUMEN

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN
2.
Nature ; 567(7748): 414-419, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867593

RESUMEN

DNA and histone modifications have notable effects on gene expression1. Being the most prevalent internal modification in mRNA, the N6-methyladenosine (m6A) mRNA modification is as an important post-transcriptional mechanism of gene regulation2-4 and has crucial roles in various normal and pathological processes5-12. However, it is unclear how m6A is specifically and dynamically deposited in the transcriptome. Here we report that histone H3 trimethylation at Lys36 (H3K36me3), a marker for transcription elongation, guides m6A deposition globally. We show that m6A modifications are enriched in the vicinity of H3K36me3 peaks, and are reduced globally when cellular H3K36me3 is depleted. Mechanistically, H3K36me3 is recognized and bound directly by METTL14, a crucial component of the m6A methyltransferase complex (MTC), which in turn facilitates the binding of the m6A MTC to adjacent RNA polymerase II, thereby delivering the m6A MTC to actively transcribed nascent RNAs to deposit m6A co-transcriptionally. In mouse embryonic stem cells, phenocopying METTL14 knockdown, H3K36me3 depletion also markedly reduces m6A abundance transcriptome-wide and in pluripotency transcripts, resulting in increased cell stemness. Collectively, our studies reveal the important roles of H3K36me3 and METTL14 in determining specific and dynamic deposition of m6A in mRNA, and uncover another layer of gene expression regulation that involves crosstalk between histone modification and RNA methylation.


Asunto(s)
Adenosina/análogos & derivados , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Humanos , Lisina/química , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Transcriptoma/genética
3.
FASEB J ; 37(11): e23236, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37846808

RESUMEN

Immune checkpoint inhibitors have effectively transformed the treatment of many cancers, particularly those highly devastating malignancies. With their widespread popularity, the drawbacks of immune checkpoint inhibitors are also recognized, such as drug resistance and immune-related systematic side effects. Thus, it never stops investigating novel immune checkpoint inhibitors. Lymphocyte Activation Gene-3 (LAG-3) is a well-established co-inhibitory receptor that performs negative regulation on immune responses. Recently, a novel FDA-approved LAG-3 blocking agent, together with nivolumab as a new combinational immunotherapy for metastatic melanoma, brought LAG-3 back into focus. Clinical data suggests that anti-LAG-3 agents can amplify the therapeutic response of other immune checkpoint inhibitors with manageable side effects. In this review, we elucidate the intercellular and intracellular mechanisms of LAG-3, clarify the current understanding of LAG-3 in the tumor microenvironment, identify present LAG-3-associated therapeutic agents, discuss current LAG-3-involving clinical trials, and eventually address future prospects for LAG-3 inhibitors.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/patología , Nivolumab/uso terapéutico , Inmunoterapia , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
4.
Pharmacol Res ; 203: 107160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547937

RESUMEN

Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.


Asunto(s)
Inmunoconjugados , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
5.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33212483

RESUMEN

NLRP3 inflammasome was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. However, a systematic assessment of the NLRP3-inflammasome-related genes across human cancers is lacking, and the predictive role of NLRP3 inflammasome in cancer immunotherapy (CIT) response remains unexplored. Thus, in this study, we performed a pan-cancer analysis of NLRP3-inflammasome-related genes across 24 human cancers. Out of these 24 cancers, 15 cancers had significantly different expression of NLRP3-inflammasome-related genes between normal and tumor samples. Meanwhile, Cox regression analysis showed that the NLRP3 inflammasome score could be served as an independent prognostic factor in skin cutaneous melanoma. Further analysis indicated that NLRP3 inflammasome may influence tumor immunity mainly by mediating tumor-infiltrating lymphocytes and macrophages, and the effect of NLRP3 inflammasome on immunity is diverse across tumor types in tumor microenvironment. We also found that the NLRP3 inflammasome score could be a stronger predictor for immune signatures compared with tumor mutation burden (TMB) and glycolytic activity, which have been reported as immune predictors. Furthermore, analysis of the association between NLRP3 inflammasome and CIT response using six CIT response datasets revealed the predictive value of NLRP3 inflammasome for immunotherapy response of patients in diverse cancers. Our study illustrates the characterization of NLRP3 inflammasome in multiple cancer types and highlights its potential value as a predictive biomarker of CIT response, which can pave the way for further investigation of the prognostic and therapeutic potentials of NLRP3 inflammasome.


Asunto(s)
Bases de Datos Factuales , Inmunoterapia , Inflamasomas/inmunología , Melanoma , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias Cutáneas , Microambiente Tumoral/inmunología , Supervivencia sin Enfermedad , Humanos , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/terapia , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/terapia , Tasa de Supervivencia , Melanoma Cutáneo Maligno
6.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985783

RESUMEN

Cannabidiol (CBD) is the main active ingredient in the cannabis plant used for treating epilepsy and related diseases. However, how CBD ameliorates epilepsy and its effect on the hippocampus remains unknown. Herein, we evaluated how CBD ameliorates seizure degree in pentylenetetrazol (PTZ) induced epilepsy mice after being exposed to CBD (10 mg/kg p.o). In addition, transcriptome and metabolomic analysis were performed on the hippocampus. Our results suggested that CBD could alleviate PTZ-induced seizure, of which the NPTX2, Gprc5c, Lipg, and Stc2 genes were significantly down-regulated in mice after being exposed to PTZ. Transcriptome analysis showed 97 differently expressed genes (CBD) and the PTZ groups. Metabonomic analysis revealed that compared with the PTZ group, 41 up-regulated and 67 down-regulated metabolites were identified in the hippocampus of epileptic mice exposed to CBD. The correlation analysis for transcriptome and metabolome showed that (±) 15-HETE and carnitine C6:0 were at the core of the network and were involved in the positive or negative regulation of the related genes after being treated with CBD. In conclusion, CBD ameliorates epilepsy by acting on the metabolism, calcium signaling pathway, and tuberculosis pathways in the hippocampus. Our study provided a practical basis for the therapeutic potential of treating epilepsy using CBD.


Asunto(s)
Cannabidiol , Epilepsia , Ratones , Animales , Cannabidiol/uso terapéutico , Pentilenotetrazol/efectos adversos , Anticonvulsivantes/uso terapéutico , Multiómica , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Convulsiones/inducido químicamente
7.
Mol Cancer ; 21(1): 177, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36071472

RESUMEN

Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Hipoxia/metabolismo , Macrófagos/metabolismo , Neoplasias/patología , Microambiente Tumoral
8.
Mol Cancer ; 21(1): 115, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581586

RESUMEN

Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.


Asunto(s)
Proteínas Hedgehog , Neoplasias , Apoptosis , Proteínas Hedgehog/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN no Traducido/genética , Transducción de Señal/fisiología
9.
Mol Cancer ; 21(1): 87, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346215

RESUMEN

FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/ß-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Neoplasias , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Humanos , Mutación con Pérdida de Función , Neoplasias/genética , Neoplasias/metabolismo , Ubiquitinación
10.
Diabetes Obes Metab ; 24(2): 228-238, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617381

RESUMEN

AIMS: The present study aims to determine the effects of sodium-glucose cotransporter 2 (SGLT-2) inhibitors on the serum uric acid (SUA) levels of patients with type 2 diabetes mellitus (T2DM) in Asia. METHODS: PubMed, CENTRAL, Embase and Cochrane Library databases were searched for randomized controlled trials of SGLT-2 inhibitors in patients with T2DM up to 15 July 2021, without language or date restrictions. RESULTS: In total, 19 high-quality studies (4218 participants) were included in the present network meta-analysis. All of the included SGLT-2 inhibitors (empagliflozin, dapagliflozin, canagliflozin, ipragliflozin, luseogliflozin and tofogliflozin) significantly decreased SUA levels compared with those of the control [total standard mean difference -0.965, 95% CI (-1.029, -0.901), p = .000, I2  = 98.7%] in patients with T2DM. Subgroup analysis and meta-regression showed that the combined analysis of different inhibitors might lead to heterogeneity of the results. Therefore, among the SGLT-2 inhibitors, the results of the subsequent network meta-analysis revealed that luseogliflozin and dapagliflozin ranked the highest in terms of lowering SUA levels among the SGLT-2 inhibitors. Moreover, the network meta-analysis declared that luseogliflozin (1 and 10 mg) and dapagliflozin (5 mg) led to a superior reduction in SUA in patients with T2DM. CONCLUSIONS: SGLT-2 inhibitors could significantly reduce SUA levels in patients with T2DM, particularly luseogliflozin (1 and 10 mg) and dapagliflozin (5 mg) possess the best effects. Therefore, SGLT-2 inhibitors look extremely promising as an antidiabetes treatment option in patients with T2DM with high SUA.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácido Úrico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metaanálisis en Red , Sodio
11.
J Cell Mol Med ; 25(12): 5534-5546, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960636

RESUMEN

Glioblastoma (GBM) is the most common malignant intracranial tumour with intrinsic infiltrative characteristics, which could lead to most patients eventually relapse. The prognosis of recurrent GBM patients remains unsatisfactory. Cancer cell infiltration and their interaction with the tumour microenvironment (TME) could promote tumour recurrence and treatment resistance. In our study, we aimed to identify potential tumour target correlated with rGBM microenvironment based on the gene expression profiles and clinical information of rGBM patients from The Cancer Genome Atlas (TCGA) database. LRRC15 gene with prognostic value was screened by univariate and multivariate analysis, and the correlation between macrophages and LRRC15 was identified as well. Furthermore, the prognosis correlation and immune characteristics of LRRC15 were validated using the Chinese Glioma Genome Atlas (CGGA) database and our clinical tissues by immunochemistry assay. Additionally, we utilized the transwell assay and carboxy fluorescein succinimidyl ester (CFSE) tracking to further confirm the effects of LRRC15 on attracting microglia/macrophages and tumour cell proliferation in the TME. Gene profiles-based rGBM microenvironment identified that LRRC15 could act in collusion with microglia/macrophages in the rGBM microenvironment to promote the poor prognosis, especially in mesenchymal subtype, indicating the strategies of targeting LRRC15 to improve macrophages-based immunosuppressive effects could be promising for rGBM treatments.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Recurrencia Local de Neoplasia/patología , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Proteínas de la Membrana/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Pronóstico , Tasa de Supervivencia
12.
Biol Proced Online ; 23(1): 24, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906078

RESUMEN

BACKGROUND: Since ovarian cancer leads to the poor prognosis in women all over the world, we aim to construct an immune-related lncRNAs signature to improve the survival of ovarian cancer patients. METHODS: Normal and cancer patient samples and corresponding clinical data of ovarian were obtained from The Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) database. The predictive signature was constructed by the lasso penalty Cox proportional hazard regression model. The division of different risk groups was accounting for the optimal critical value of the time-dependent Receiver Operating Characteristic (ROC) curve. Finally, we validated and evaluated the application of this prognostic signature based on the clinical factors, chemo-sensitivity and immune status of different risk groups. RESULTS: The signature was established from 145 DEirlncRNAs and can be shown as an independent prognostic risk factor with accurate prediction on overall survival in ovarian cancer patients. Further analysis on the application of the prognostic signature showed that patients with low-risk had a better sensitivity to chemotherapy and a higher immunogenicity. CONCLUSION: We constructed and verified an effective signature based on DEirlncRNA pairs, which could predict the prognosis, drug sensitivity and immune status of ovarian cancer patients and promote the prognostic estimation and individualized treatment.

13.
J Cell Mol Med ; 24(11): 6242-6252, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307830

RESUMEN

Emerging evidence suggests that dysregulation of long non-coding RNA (lncRNA) plays a key role in tumorigenesis. The lncRNA, HOXA transcript at the distal tip (HOTTIP), has been reported to be up-regulated in multiple cancers, including breast cancer, and is involved in various biological processes, including the maintenance of stemness. However, the biological function and underlying modulatory mechanism of HOTTIP in breast cancer stem cells (BCSCs) remains unknown. In this study, we found that HOTTIP was markedly up-regulated in BCSCs and had a positive correlation with breast cancer progression. Functional studies revealed that overexpression of HOTTIP markedly promoted cell clonogenicity, increased the expression of the stem cell markers, OCT4 and SOX2, and decreased the expression of the differentiation markers, CK14 and CK18, in breast cancer cells. Knockdown of HOTTIP inhibited the CSC-like properties of BCSCs. Consistently, depletion of HOTTIP suppressed tumour growth in a humanized model of breast cancer. Mechanistic studies demonstrated that HOTTIP directly binds to miR-148a-3p and inhibits the mediation of WNT1, which leads to inactivation of the Wnt/ß-catenin signalling pathway. Our study is the first to report that HOTTIP regulates the CSC-like properties of BCSCs by as a molecular sponge for miR-148a-3p to increase WNT1 expression, offering a new target for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba/genética
14.
J Cell Mol Med ; 24(1): 772-784, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736268

RESUMEN

SPRY4-intronic transcript 1 has been found in several kinds of cancers, but the role of SPRY4-IT1 in breast cancer stem cells has not been studied. We investigated whether SPRY4-IT1 is involved in the promotion of breast cancer stem cells (BCSCs). We used qRT-PCR to detect the expression of SPRY4-IT1 in MCF-7 cells and MCF-7 cancer stem cells (MCF-7 CSCs). The effects of SPRY4-IT1 on the proliferation and renewal ability of breast cancer cells were investigated by in vitro and in vivo assays (ie in situ hybridization, colony formation assay, sphere formation assay, flow cytometry assay, western blotting, xenograft model and immunohistochemistry). The mechanism of SPPRY4-IT1 as a ceRNA was studied by a dual-luciferase reporter assay and bioinformatic analysis. In our study, SPRY4-IT1 was up-regulated in MCF-7 CSCs compared with MCF-7 cells, and high SPRY4-IT1 expression was related to reduced breast cancer patient survival. Furthermore, SPRY4-IT1 overexpression promoted breast cancer cell proliferation and stemness in vitro and in vivo. In addition, SPRY4-IT1 knockdown suppressed BCSC renewal ability and stemness maintenance in vivo and in vitro. The dual-luciferase reporter assays indicated that SPRY4-IT1 as a sponge for miR-6882-3p repressed transcription factor 7-like 2 (TCF7L2) expression. Taken together, these findings demonstrated that SPRY4-IT1 promotes proliferation and stemness of breast cancer cells as well as renewal ability and stemness maintenance of BCSCs by increasing the expression of TCF7L2 through targeting miR-6882-3p.


Asunto(s)
Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , ARN Largo no Codificante/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Cell Mol Med ; 24(11): 6283-6297, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306508

RESUMEN

High mortality of patients with cervical cancer (CC) stresses the imperative of prognostic biomarkers for CC patients. Additionally, the vital status of post-translational modifications (PTMs) in the progression of cancers has been reported by numerous researches. Therefore, the purpose of this research was to dig a prognostic signature correlated with PTMs for CC. We built a five-mRNA (GALNTL6, ARSE, DPAGT1, GANAB and FURIN) prognostic signature associated with PTMs to predict both disease-free survival (DFS) (hazard ratio [HR] = 3.967, 95% CI = 1.985-7.927; P < .001) and overall survival (HR = 2.092, 95% CI = 1.138-3.847; P = .018) for CC using data from The Cancer Genome Atlas database. Then, the robustness of the signature was validated using GSE44001 and the Human Protein Atlas (HPA) database. CIBERSORT algorithm analysis displayed that activated CD4 memory T cell was also an independent indicator for DFS (HR = 0.426, 95% CI = 0.186-0.978; P = .044) which could add additional prognostic value to the signature. Collectively, the PTM-related signature and activated CD4 memory T cell can provide new avenues for the prognostic predication of CC. These findings give further insights into effective treatment strategies for CC, providing opportunities for further experimental and clinical validations.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Procesamiento Proteico-Postraduccional/genética , Neoplasias del Cuello Uterino/genética , Linfocitos T CD4-Positivos/inmunología , Bases de Datos Genéticas , Femenino , Humanos , Memoria Inmunológica , Estimación de Kaplan-Meier , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Anotación de Secuencia Molecular , Pronóstico , Supervivencia sin Progresión , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/patología
16.
J Cell Mol Med ; 24(3): 2215-2228, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31943775

RESUMEN

Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six-snoRNA signature and divided patients into high-risk or low-risk groups. We found patients in high-risk group had significantly shorter overall survival and recurrence-free survival than those in low-risk group in test series, validation series and entire series by Kaplan-Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six-snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six-snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , ARN Nucleolar Pequeño/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Renales/patología , Estudios de Casos y Controles , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/patología , Análisis Multivariante , Pronóstico , Factores de Riesgo , Transducción de Señal/genética , Proteasas Ubiquitina-Específicas/genética
17.
J Cell Physiol ; 235(5): 4361-4375, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637715

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most malignant tumor types worldwide. Our objective was to identify a genetic signature that could predict the prognosis of patients with LUAD. We extracted gene data sets from The Cancer Genome Atlas and obtained differentially expressed genes that were highly expressed at every stage. These genes were analyzed using gene set enrichment analysis to obtain four biological processes associated with LUAD. Subsequently, Cox univariate and multivariate analyses were performed to generate four optimized models (G2M checkpoint, E2F targets, mitotic spindle, and glycolysis). We identified a mitotic spindle-related signature (KIF15, BUB1, CCNB2, CDK1, KIF4A, DLGAP5, ECT2, and ANLN), which could be an independent prognostic indicator, to predict the prognosis of patients with LUAD. This new discovery should offer opportunities to explore the pathogenesis of LUAD and prove clinically useful in predicting LUAD patient prognosis.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/metabolismo , Huso Acromático/metabolismo , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
18.
J Cell Biochem ; 121(2): 1842-1854, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633246

RESUMEN

Gastric cancer (GC) is one of the most fatal common cancers in worldwide. Helicobacter pylori (H. pylori) infection is closely related to the development of GC, although the mechanism is still unclear. In our study, we aim to develop a robust messenger RNA (mRNA) signature associated with H. pylori (-) GC that can sensitively and efficiently predict the prognostic. The RNA-seq expression profile and corresponding clinical data of 598 gastric cancer samples and 63 normal samples obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Using gene set enrichment analysis H. pylori (+) GC and H. pylori (-) GC patients and normal samples to select certain genes for further analysis. Using univariate and multivariate Cox regression model to establish a gene signature for predicting the overall survival (OS). Finally, we identified G2/M related seven-mRNA signature (TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2, and CHAF1A) closely related to the prognosis of patients with H. pylori (-) GC. The seven-mRNA signature was identified to act as an independent prognostic biomarker by stratified analysis and multivariate Cox regression analysis. It was also validated on two test groups from TCGA and GSE15460 and shown that patients with high-risk scores based on the expression of the seven mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < .0001). In this study, we developed a seven-mRNA signature related to G2/M checkpoint from H. pylori (-) GCs that as an independent biomarker potentially with a good performance in predicting OS and might be valuable for the clinical management for patients with GC.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/aislamiento & purificación , Interacciones Huésped-Patógeno/genética , Neoplasias Gástricas/patología , Femenino , Perfilación de la Expresión Génica , Infecciones por Helicobacter/virología , Humanos , Masculino , ARN Neoplásico/análisis , ARN Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/virología
19.
J Cell Biochem ; 121(12): 4785-4797, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32115780

RESUMEN

Circular RNA (circRNA) has been reported to have great scientific significance and clinical value in multiple cancers including colorectal cancer (CRC). However, the biological function of most circRNAs in CRC is still in its infancy. Herein, we discovered the differential expressed circRNAs (DECs) between CRC tissues and matched adjacent using deep RNA sequencing and further confirmed the DECs expression by combining with another Gene Expression Omnibus dataset. Furthermore, we validated the expression of the top four upregulated circRNAs (hsa_circ_0030632, hsa_circ_0004887, hsa_circ_0001550, and hsa_circ_0001681) in both of paired CRC tissues and CRC cell lines. Then, a circRNA/microRNA/messenger RNA regulatory network was established and the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed these four circRNAs participated in various biological processed including apoptotic process and multiple metabolic processes. Moreover, based on the regulatory network, three bioactive compounds (pergolide, pivampicillin, and methylergometrine) for the treatment of CRC were also found. In conclusion, this study improved our understanding of circRNAs and may also facilitate the finding of promising targets and biomarkers in CRC.

20.
Mol Cancer ; 19(1): 95, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32443980

RESUMEN

BACKGROUND: Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) as master gene regulators at the epigenetic modification level. However, the underlying mechanism of these functional ncRNAs in colorectal cancer (CRC) has not been well investigated. METHODS: The dysregulated expression profiling of lncRNAs-snoRNAs-mRNAs and their correlations and co-expression enrichment were assessed by GeneChip microarray analysis. The candidate lncRNAs, snoRNAs, and target genes were detected by in situ hybridization (ISH), RT-PCR, qPCR and immunofluorescence (IF) assays. The biological functions of these factors were investigated using in vitro and in vivo studies that included CCK8, trans-well, cell apoptosis, IF assay, western blot method, and the xenograft mice models. rRNA 2'-O-methylation (Me) activities were determined by the RTL-P assay and a novel double-stranded primer based on the single-stranded toehold (DPBST) assay. The underlying molecular mechanisms were explored by bioinformatics and RNA stability, RNA fluorescence ISH, RNA pull-down and translation inhibition assays. RESULTS: To demonstrate the involvement of lncRNA and snoRNAs in 2'-O-Me modification during tumorigenesis, we uncovered a previously unreported mechanism linking the snoRNPs NOP58 regulated by ZFAS1 in control of SNORD12C, SNORD78 mediated rRNA 2'-O-Me activities in CRC initiation and development. Specifically, ZFAS1 exerts its oncogenic functions and significantly up-regulated accompanied by elevated NOP58, SNORD12C/78 expression in CRC cells and tissues. ZFAS1 knockdown suppressed CRC cell proliferation, migration, and increased cell apoptosis, and this inhibitory effect could be reversed by NOP58 overexpression in vitro and in vivo. Mechanistically, the NOP58 protein could be recognized by the specific motif (AAGA or CAGA) of ZFAS1. This event accelerates the assembly of SNORD12C/78 to allow for further guiding of 2'-O-Me at the corresponding Gm3878 and Gm4593 sites. Importantly, silencing SNORD12C or 78 reduced the rRNAs 2'-O-Me activities, which could be rescued by overexpression ZFAS1, and this subsequently inhibits the RNA stability and translation activity of their downstream targets (e.g., EIF4A3 and LAMC2). CONCLUSION: The novel ZFAS1-NOP58-SNORD12C/78-EIF4A3/LAMC2 signaling axis that functions in CRC tumorigenesis provides a better understanding regarding the role of lncRNA-snoRNP-mediated rRNAs 2'-O-Me activities for the prevention and treatment of CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/genética , Estabilidad del ARN , ARN Nucleolar Pequeño/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda