Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Physiol Plant ; 174(5): e13748, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36281838

RESUMEN

Being an important carbon (C) sink, phytolith-occluded carbon (PhytOC) has been investigated in various soil-plant systems. However, the effects of environmental factors (i.e., drought) on phytoliths, including altered deposition in plant tissues, morphological variation, and amounts of carbon occluded within phytoliths, are less studied. In this study, we analyzed the monthly variations of phytolith production and PhytOC in the leaves of Dendrocalamus ronganensis grown on a karst mountain in southwestern China during a drought year. This study thus sought to understand the effects of drought on phytolith formation, morphological variations and carbon sequestration within phytoliths in plants. Our results showed that the phytolith assemblages and PhytOC between new and old leaves differed significantly and varied with plant growth stages. The average PhytOC values of old leaves and tip leaves were 3.2% and 2.2%, respectively. In particular, both PhytOC and proportions of ELONGATE, BULLIFORM FLABELLATE, and STOMA phytoliths in tip leaves significantly decreased from September to January the following year because of drought effects. This study suggests that PhytOC in plants varies between phytolith morphotypes and is significantly affected by plant growth stage and hydrologic conditions. This indicates that we can improve the efficiency of phytolith carbon sequestration in plants by improving the soil water conditions required for plant growth.


Asunto(s)
Carbono , Sequías , Estaciones del Año , Hojas de la Planta , Suelo , Plantas , Agua
2.
PLoS One ; 17(7): e0270842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35788203

RESUMEN

Electron probe microanalysis (EPMA) is promising for accurately determining elemental components in micro-areas of individual phytolith particles, interpreting compositional features and formation mechanisms of phytoliths in plants, identifying archeological and sedimental phytolith. However, the EPMA method of analyzing mounted slide phytoliths has not well been defined. In this study, we attempted different EPMA methods to determine the elemental compositions of phytoliths in mounted slides. Direct analysis of carbon (DAC) with other elements in phytolith could obtain abnormally high total values and carbon values. The method of carbon excluded in measuring elements (non-carbon analysis (NCA)) was feasible to obtain elemental compositions in phytolith. The NCA method was conducive to obtain the factual elemental compositions of an individual phytolith (morphotype) when the carbon content of phytolith was relatively low. The EPMA results of phytoliths from 20 bamboo species (three genera) showed that phytolith was dominantly composed of SiO2 but also included low contents of diverse other elements. The EPMA of phytoliths can provide the elemental composition of micro-areas of an individual phytolith particle. The elemental compositions of phytolith varied with their morphotypes, the genera and ecotype of bamboos. The EPMA of elemental compositions in phytoliths is a potential tool to study the formation mechanism of phytoliths, plant taxonomical identification, archaeological and paleoenvironmental reconstruction.


Asunto(s)
Dióxido de Silicio , Madera , Arqueología , Ecotipo , Microanálisis por Sonda Electrónica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda