RESUMEN
Perovskite-structured catalysts LaMO3 (M = Co, Fe) were successfully synthesized and attempted to catalyze hydrogen peroxide (H2O2) for the degradation of Direct Blue 86 (DB86), a carcinogenic phthalocyanine dye. The heterogeneous Fenton-like reaction revealed that the oxidative power of the LaCoO3-catalyzed H2O2 (LaCoO3/H2O2) process was higher than that of LaFeO3/H2O2. When LaCoO3 was calcined at 750 °C for 5 h, 100 mg/L of DB86 could be completely degraded within 5 min via LaCoO3/H2O2 system under H2O2 0.0979 mol/L, initial pH 3.0, LaCoO3 0.4 g/L, and 25 °C. The oxidative LaCoO3/H2O2 system has a low activation energy (14.68 kJ/mol) for DB86 degradation, indicating that it is a fast reaction process with highly favorable at high reaction temperatures. For the first time, a cyclic reaction mechanism of catalytic LaCoO3/H2O2 system was proposed based on the evidence of coexisting CoII and CoIII on the LaCoO3 surface and the presence of HO⢠radicals (major), O2â¢- radicals (minor), and 1O2 (minor). LaCoO3 perovskite catalyst was reusable and still maintained reactive with a satisfactory degradation efficiency within 5 min even after five consecutive uses. This study shows that the as-prepared LaCoO3 is a highly efficient catalyst for phthalocyanine dye degradation.
Asunto(s)
Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , CatálisisRESUMEN
Design and development of inexpensive, portable, and eco-friendly electrochemical non-enzymatic sensors with high selectivity and sensitivity is pivotal in analytical chemistry. In this regard, we have developed a highly porous graphitic-activated carbon (GAC, derived from tamarind fruit shell biomass) coated iron oxide (Fe2O3) nanocomposite (Fe2O3/GAC) for the efficient detection of rutin (vitamin p). Fe2O3/GAC nanocomposite was prepared using a facile green synthesis method and thoroughly characterized using SEM, XRD, and XPS techniques. As-prepared Fe2O3/GAC nanocomposite was deposited over a screen printed electrode (SPE) to fabricate Fe2O3/GAC/SPE and utilized as a non-enzymatic sensor for the electrochemical determination of rutin in food and environmental samples. The modified electrode was characterized using cyclic voltammetry and electrochemical impedance spectroscopy techniques, which witnessed the excellent conductivity of the developed sensor. The fabricated Fe2O3/GAC/SPE nanocomposite exhibited a set of redox peaks in the presence of rutin, corresponding to the electrochemical redox feature of rutin (rutin to 3',4'-diquinone). Further, the modified electrode displayed excellent electrocatalytic characteristics towards the oxidation of rutin, based on which a differential pulse voltammetry-based sensor was developed for rutin determination. The developed non-enzymatic sensor has shown prominent performance towards rutin detection in a wide linear range from 0.1 to 130 µM with an excellent detection limit of 0.027 µM. The enhanced electrocatalytic response could be ascribed to the synergistic effect of Fe2O3 and GAC on the developed probe. Moreover, the developed sensor was successfully utilized for real-time detection of rutin in various samples.
Asunto(s)
Grafito , Nanocompuestos , Biomasa , Técnicas Electroquímicas/métodos , Compuestos Férricos , Nanocompuestos/química , Porosidad , Rutina , VitaminasRESUMEN
BACKGROUND: The marketability of banana is limited by the rapid rate of ripening. However, the traditional post-harvest technologies may not be desirable. The aim of this study was to investigate the potential of a reusable material for the food preservation industry. RESULTS: The nanocomposite-based palladium (Pd)-modified zeolite (Pd/zeolite) was prepared by impregnating Pd into zeolite. Pd/zeolite had a Brunauer-Emmett-Teller dinitrogen specific surface area of 475 m2 g-1 with crystal structure similar to Y-zeolite. Transmission electron microscopy images showed the dispersion of Pd particles over the multi-pore zeolite support. Pd/zeolite uniquely acted as an adsorbent and a catalyst and was able to remove ethylene even after reaching breakthrough point. To prove Pd/zeolite is reusable, a 99 ± 0.8% ethylene removal efficiency still remained even after five consecutive cycles with repeated use of Pd/zeolite. The presence of Pd/zeolite significantly decreased the ethylene concentration during 18 days of storage at 20 ± 2 °C. CONCLUSIONS: Pd/zeolite could delay the ripening of banana and improve its firmness and the peel color significantly. Findings indicated that the as-prepared Pd/zeolite is an effective adsorbent/catalyst with high potential for practical application in ethylene removal, especially for the post-harvest period. © 2019 Society of Chemical Industry.
Asunto(s)
Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Musa/química , Paladio/farmacología , Zeolitas/farmacología , Catálisis , Etilenos/análisis , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/química , Frutas/química , Paladio/química , Zeolitas/químicaRESUMEN
The present study examined the oxidation power of a Fe0 aggregates/persulfate (PS/Fe0) system for the degradation of the wastewater containing mixed primary direct dyes (i.e., Sirius® Gelb S-2G, Sirius® Red F3B, and Sirius® Turkis GL01). Results indicated that decolorization efficiency was determined by operating parameters of the PS/Fe0 system and the structural complexity of dye molecules. System efficiency increased with increasing persulfate and Fe0 dosages. Faster decolorization was observed in experiments conducted at pH < 10. The process obeyed a first-order kinetics. Slow heterogeneous reactions were observed at high initial pH (>10.5) and low PS concentration (<2 × 10-3 M). Inhibitory effect occurred in systems containing salts Na2SO4, NaCl, Na2CO3, and Na2HPO4 at 1 × 10-2 M. The effect was suppressed when reaction temperature was raised to 55 °C. Heat enhanced not only decolorization efficiency, but also COD removal. Complete decolorization of a mixed dye containing ADMI (the American Dye Manufacture Institute) 15105 was achieved within10 min in the PS/Fe0/55 °C system with an initial pH of 6.0 and dosages of 5 × 10-3 M Na2S2O8 and 0.5 g/L Fe0. Low molecular weight intermediates including organic acids were identified. Due to a relatively low activation energy (4.68 kcaL/mol), the PS/Fe0 system exhibited higher efficiency at higher temperature. This study demonstrated that Fe0-activated PS is a promising process for the treatment of textile wastewaters containing mixed azo direct dyes.
Asunto(s)
Compuestos Azo , Colorantes , Aguas Residuales , Purificación del Agua , Color , Oxidación-ReducciónRESUMEN
Many industrial wastewaters contain an appreciable amount of toxic copper (Cu(II)) that needs to be properly treated before discharging into receiving water body. Adsorption can effectively remove Cu(II) with optimized parameters. This study investigates the critical pyrolysis parameters of biochar derived from agricultural waste. Optimized biochar showed maximum Cu(II) adsorption capacity of 60.7, 36.8, and 35.5 mg g-1 by PLB, SBB, and CWB at pyrolysis temperatures of 555 â, 559 â, 507 â, respectively, compared with commercial activated carbon (CAC, 40.8 mg g-1). Surface characterization confirmed surface complexation, electrostatic interaction, and cation exchange capacity as Cu(II) removal mechanisms. The presence of humic acid reduced the Cu(II) removal of both CAC and optimized biochars. Optimized PLB displayed high reusability (87% Cu(II) removal efficiency) after five consecutive cycles using pressure cooker regeneration. With excellent Cu(II) adsorption capacity and reusability, the investigated biochars show high applicability potential to Cu(II)-laden wastewater treatment.
Asunto(s)
Ananas , Saccharum , Contaminantes Químicos del Agua , Celulosa , Zea mays , Adsorción , Carbón Orgánico , CobreRESUMEN
Although tremendous works have been done on metal adsorption via biochar, mechanisms responsible for metal adsorption remain uncertain. This is the first work that provides direct evidence on the identification of Ni(II), Zn(II), and Cu(II) adsorption mechanisms on pineapple leaf biochar (PLB) using surface characteristics analyses, including X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FTIR), and scanning electron microscope with energy-dispersive X-ray spectroscope (SEM-EDS). From Langmuir isotherm fitting, the maximum adsorption capacity of PLB for Ni(II), Zn(II), and Cu(II) are 44.88, 46.00, and 53.14 mg g-1, respectively, surpassing all biochars reported in the literature. Findings of surface characterization techniques coupled with cation released during adsorption, cation exchange, and surface complexation mechanisms were proposed. PLB is reusable and remains sufficient adsorption capacity even six consecutive cycles via pressure cooker regeneration. With high regenerability and ultrahigh adsorption capacity, PLB defines itself as a promising adsorbent for future applications in metal-laden wastewater.
Asunto(s)
Ananas , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Hojas de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisisRESUMEN
INTRODUCTION: In the developing countries, the pace of change-in vital technologies, in scientific research, in economic fundamentals, in the living environment, and in pursuing quality of life-is accelerating every day, propelled by continuous changes in technology innovation, human activities, and the rapidly evolving demands of the COVID-19 pandemic. This special issue (SI) of Environmental Science and Pollution Research (ESPR) collected 17 peer-reviewed articles relating to green buildings research, the impact of climate change on the extreme weather events, forward osmosis membranes for water reuse, the impacts of human activities to fragile water environments and economy, air pollution control and carbon emission reduction, risk assessment of pollution hazard and water resources, adsorption reaction of antibiotic pollution in subsurface, synthesized novel adsorptive materials in response to nitrogen and phosphorus, dye, and toluene pollution. All selected papers were relevance to the theme of this SI and formally presented at the 2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020) on September 18th-20th, 2020, Shanghai, China. For the safety of the participants, ICAEER 2020 was held via online presentation because of the coronavirus pandemic sweeping across all over the world. As an annually held conference, the upcoming 6th ICAEER 2021 is scheduled held in Shanghai from September 10 to 12, 2021 ( http://www.icaeer.org/index.html ). The guest editor (GE) of this SI welcomes you all to participate in this conference.
Asunto(s)
Contaminación del Aire , COVID-19 , Contaminación del Aire/análisis , China , Países en Desarrollo , Contaminación Ambiental , Humanos , Pandemias , Calidad de Vida , SARS-CoV-2RESUMEN
This study demonstrated that nitrogen-doped carbon materials (NCMs) could effectively catalyze the chlorine elimination process in hexachloroethane (HCA) declorination in sulfide-containing environments for the first time. The kobs values of HCA dechlorination by sulfide in the presence of 10 mg/L NCMs were higher than that of no mediator at pH 7.3 by one or two orders of magnitude. The catalytic capabilities of NCMs on HCA dechlorination were evident in common ranges of natural pH (5.3-8.9) and it could be accelerated by the increase of pH but be suppressed by the presence of dissolved humic acid. Moreover, NCMs exhibited much better catalytic capability on HCA dechlorination compared to the carbon materials, mainly owing to the combined contributions of pyridine N, including enhanced nucleophilic attack to HCA molecule by generating newborn C-S-S and activation of HCA molecule by elongating C-Cl bonds. The functions of pyridine N in micron-sized NCMs with mesopores were better than in nano-sized NCMs on HCA dechlorination. These findings displayed the potential of NCMs, when released into sulfide-containing environments, may significantly increase the dechlorination of chlorinated aliphatic hydrocarbons.
Asunto(s)
Carbono , Nitrógeno , Catálisis , Etano/análogos & derivados , Humanos , Hidrocarburos Clorados , Recién Nacido , SulfurosRESUMEN
The ability of magnetic Fe3O4 nanoparticles (MFN) to remove new coccine (NC), an acidic dye, from aqueous solutions was studied. Parameters including ionic strength, pH, and temperature were evaluated. MFN, prepared by precipitation method, exhibits an average particle size of 12.5 nm, specific surface area of 85.5 m²/g, and pH(zpc) of 5.9. Results of kinetic adsorption experiments indicated that the pseudo-second-order rate of adsorption increased with increasing initial NC concentration. Findings also revealed that the equilibrium data could be fitted into Langmuir adsorption isotherm. The adsorption is favored at low pH, high temperature, and low ionic strength, whereupon a maximum adsorption capacity of 1.11 x 10â»4 mol/g was determined for NC. Thermodynamic functions indicated that the adsorption process is spontaneous and exothermic in nature. Tests of regeneration showed that after 5 regeneration cycles the adsorption capacity of NC decreased to 35% to its original capacity.
Asunto(s)
Compuestos Azo/aislamiento & purificación , Compuestos Férricos , Magnetismo , Purificación del Agua/métodos , Adsorción , Compuestos Azo/química , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica , Modelos Teóricos , NaftalenosulfonatosRESUMEN
Fungi are highly survived with exceptional resistance to environmental stress. Conventional fungicides are quite efficient, but the increase in use raises severe environmental problems. In this study, environmentally friendly TiO2-mediated visible-light-responsive photocatalysts, namely N-TiO2, N-T-TiO2, C-TiO2, and Pd-C-TiO2, were used to compare the performance of disinfecting a mold fungi Aspergillus niger. Key parameters, including photocatalyst dosage, the initial fungal concentration, and visible-light intensity, affecting the disinfecting process, was investigated. A new developed Light-responsive Modified Hom's (LMH) kinetic model incorporating visible-light intensity and photocatalyst light-absorption coefficient was firstly used to predict such photocatalytic process in fungal inactivation. Among the photocatalysts, Pd-C-TiO2 showed the highest inactivation performance against fungi, followed by C-TiO2, N-T-TiO2, and N-TiO2. In general, inactivation increased with increasing photocatalyst dosage and light intensity while decreased with increasing initial fungal concentration. For kinetic modeling, the LMH model supports the hypothesis that photocatalyst performance toward visible-light-driven fungal inactivation primarily depends on the light-absorption capacity of the photocatalyst. In conclusion, mold fungi Aspergillus niger are effectively disinfected by TiO2-mediated visible-light-responsive photocatalysts, and such fungal inactivation process could be predicted by LMH kinetic model.
Asunto(s)
Desinfección/métodos , Titanio/química , Aspergillus niger , Cinética , Luz , Procesos FotoquímicosRESUMEN
Adsorption of Cr(VI) onto spent activated clay (SAC), a waste produced from an edible oil refinery company, was investigated for its beneficial use in wastewater treatment. After pressure steam treatment, SAC was used as an adsorbent. The adsorption kinetic data were analyzed and fitted well in a pseudo-first-order equation and the rate of removal was found to speed up with decreasing pH and increasing temperature. Activation energy for the adsorption process was found to be 4.01-5.47 kcal/K mol. The Langmuir adsorption isotherm was used to fit the equilibrium data and the effect of pH, temperature and ionic strength were studied. The maximum adsorption capacities for Cr(VI) ranged from 0.743 to 1.422 mg/g for temperature between 4 and 40 degrees C under a condition of pH 2.0. The studies conducted show the process of Cr(VI) removal to be spontaneous at high temperature and endothermic in nature. From the waste utilization and environment point of view, the work carried out is important and useful. Results obtained can serve as baseline data for designing a treatment process using this low-cost adsorbent for the treatment of wastewater rich in Cr(VI).
Asunto(s)
Silicatos de Aluminio/química , Cromo/química , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Arcilla , Industria de Alimentos , Concentración de Iones de Hidrógeno , Cinética , Aceites , Concentración Osmolar , Soluciones , TermodinámicaRESUMEN
The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Æ-carbon) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Æ-carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24%⯱â¯0.59%, -14.6%⯱â¯1.71%, and -21.1%⯱â¯1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Æ-carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions.
Asunto(s)
Isótopos de Carbono/análisis , Etilenos/metabolismo , Consorcios Microbianos , Biodegradación Ambiental , Carbono , TricloroetilenoRESUMEN
The adsorption characteristics of methylene blue (MB) onto spent activated clay (SAC), a waste produced from an edible oil manufacturer was investigated. Results showed that the adsorption increased with increasing MB concentration, temperature, and pH. The adsorption equilibrium data was well fitted by multilayer adsorption isotherm. The maximum adsorption capacities for MB ranged from 0.94x10(-4) to 3.41x10(-4)mol/g between 5 and 45 degrees C. Thermodynamic parameters suggest that the adsorption is spontaneous and endothermic. We proposed a modified double exponential equation accounting both with chemical and mathematical point of view to describe the adsorption kinetic data. The increases of mass transfer and adsorption capacity were mainly attributed to the interlayer of the SAC expanding at higher temperature. An activation energy of 13.5 kcal/Kmol was determined suggesting that the adsorption involved a chemical reaction mechanism.
Asunto(s)
Silicatos de Aluminio/química , Colorantes/química , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Adsorción , Arcilla , Conservación de los Recursos Naturales , Industria de Procesamiento de Alimentos , Concentración de Iones de Hidrógeno , Residuos Industriales , Aceites , Temperatura , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodosRESUMEN
This paper investigated the effectiveness of incorporating zero-valent iron (ZVI) into electrokinetic (EK) to remediate hyper-Cr(VI) contaminated clay (2497 mg/kg). A ZVI wall was installed in the center of the soil specimen and was filled with 1:1 (w/w) ratio of granular ZVI and sand. Results show that transport of H(+) is greatly retarded by the strong opposite migration of anionic chromate ions, whereupon a revered electroosmosis flow (EO) was resulted and alkaline zone across the specimen was developed promoting the release of Cr(VI) from the clay. Chromium removal was characterized by high Cr(VI) concentration occurred in the anolyte and the presence of Cr(III) precipitates in the catholyte. The Cr(VI) reduction efficiencies for the process without ZVI wall were 68.1 and 79.2% for 1 and 2V/cm, respectively. As ZVI wall was installed, the corresponding reduction efficiencies increased to 85.8 and 92.5%. The costs for energy and ZVI utilized in this process are US$ 41.0 and 57.5 per cubic meter for the system with electric gradient of 1 and 2V/cm, respectively. The role of ZVI wall effectively reducing Cr(VI) contamination and the operation simultaneous collection of Cr(VI) from the electrode reservoirs are two major advantages of this process.
Asunto(s)
Cromo/química , Electrones , Hierro/química , Silicatos de Aluminio , Arcilla , Electrodos , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Oxidación-ReducciónRESUMEN
The aim of this work was to study the effects of the presence of oxygen on the dechlorination of trichloroethene by a microbial consortium containing D. mccartyi. The 16S rRNA and reductive dechlorination genes of the functional bacteria and the non-dechlorinators were monitored. Exposing the consortium to oxygen altered the overall biotransformation rate of the dechlorination process, biotransformation processes prolonged with oxygen concentrations changing from 0 to 7.2mg/L, however, trichloroethylene was eventually dechlorinated to ethene. The qPCR analyses revealed that the D. mccartyi strains containing the tceA gene were less sensitive to exposure to oxygen than were the D. mccartyi strains containing the vcrA gene. High-throughput sequencing by Illumina MiSeq indicated that the non-dechlorinating organisms were probably crucial to scavenge the oxygen to protect D. mccartyi from being damaged.
Asunto(s)
Biodegradación Ambiental , Consorcios Microbianos , Tricloroetileno , Chloroflexi , Oxígeno , ARN Ribosómico 16S , Cloruro de ViniloRESUMEN
An enhanced electrokinetic process for removal of metals (Cr, Cu, Fe, Ni, Pb, Zn) from an industrial wastewater sludge was performed. The electrokinetic experiments were conducted under a constant potential gradient (1.25 V cm(-1)) with processing fluids of tap water (TW), sodium dodecylsulfate (SDS) and citric acid (CA) for 5 days. Results showed that metal removal efficiency of heavy metals for EK-TW, EK-SDS and EK-CA systems are 11.2-60.0%, 37.2-76.5%, and 43.4-78.0%, respectively. A highest metal removal performance was found in EK-CA system. The removal priority of investigated metals from sludge by EK process was found as: Cu > Pb > Ni > Fe > Zn > Cr. The results of sequential extraction analysis revealed that the binding forms of heavy metals with sludge after electrokinetic process were highly depend upon the processing fluid operated. It was found that the binding forms of metals with sludge were changed from the more difficult extraction type (residual and sulfate fractions) to easier extraction types (exchangeable, sorbed, and organic fraction) after treatment by electrokinetic process. Results imply that if a proper treatment technology is followed by this EK process to remove metals more effectively, this treated sludge will be more beneficial for sludge utilization afterwards. Before it was reused, the risk associated with metals of more mobile forms to the environment need to be further investigated. The cost analysis was also evaluated for the investigated electrokinetic systems.
Asunto(s)
Residuos Industriales/análisis , Metales Pesados/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Electroquímica , Electrodos , Cinética , Purificación del Agua/instrumentaciónRESUMEN
Effluents from the paper printing and textile industries are often heavily contaminated with azo dyes. Azo dyes are difficult to oxidize biologically. This work investigated the decolorization of an azo dye, C.I. Direct Red 23 (DR23), by persulfate (PS) activated with Fe(0) aggregates (PS/Fe(0)). Ultrasound (US) and heat were used as enhancement tools in the PS oxidation system. Neither US-activated PS nor thermally activated PS was effective in oxidizing DR23. However, the decolorization was significantly enhanced by PS/Fe(0) combined with US (PS/Fe(0)/US) or heat (PS/Fe(0)/55 °C). Approximately 95% decolorization of 1×10(-4) M DR23 was achieved within 15 min in the PS/Fe(0)/US system at an initial pH of 6.0, PS of 5×10(-3) M, Fe(0) of 0.5 g/L and US irradiation of 106 W/cm(2) (60 kHz). Complete decolorization was achieved within 10 min in the Fe(0)/PS/55 °C system. The rate of decolorization doubled when US was introduced in the PS/Fe(0) system during the treatment of different initial dye concentrations. The dependence of dye and true color (ADMI) depletion on PS concentration has been discussed. DR23 was completely degraded based on the disappearance of aromatic groups of UV-vis spectra and the variation of TOC mineralization. The observed pseudo-first-order decolorization rate was substantially enhanced by increasing temperature. The Arrhenius activation energy for the PS activated with Fe(0) was estimated as 8.98 kcal/mol, implying that higher temperature is beneficial for the DR23 decolorization. The addition of US into the PS/Fe(0) system did not incur a substantial increase in electricity, whereas the mineralization of DR23 occurred quickly. Thus, both PS/Fe(0)/US and heated PS/Fe(0) systems are practically feasible for the effective degradation of the direct azo dye in textile wastewater.
RESUMEN
The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process.