Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Environ Sci Technol ; 58(26): 11748-11759, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38912726

RESUMEN

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.


Asunto(s)
Plomo , Fosfatos , Plomo/química , Fosfatos/química , Compuestos de Hierro/química , Minerales/química , Concentración de Iones de Hidrógeno , Adsorción
2.
Ecotoxicol Environ Saf ; 284: 116867, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154501

RESUMEN

The loss of nitrogen in soil damages the environment. Clarifying the mechanism of ammonium nitrogen (NH4+-N) transport in soil and increasing the fixation of NH4+-N after N application are effective methods for improving N use efficiency. However, the main factors are not easily identified because of the complicated transport and retardation factors in different soils. This study employed machine learning (ML) to identify the main influencing factors that contribute to the retardation factor (Rf) of NH4+-N in soil. First, NH4+-N transport in the soil was investigated using column experiments and a transport model. The Rf (1.29 - 17.42) was calculated and used as a proxy for the efficacy of NH4+-N transport. Second, the physicochemical parameters of the soil were determined and screened using lasso and ridge regressions as inputs for the ML model. Third, six machine learning models were evaluated: Adaptive Boosting, Extreme Gradient Boosting (XGB), Random Forest, Gradient Boosting Regression, Multilayer Perceptron, and Support Vector Regression. The optimal ML model of the XGB model with a low mean absolute error (0.81), mean squared error (0.50), and high test r2 (0.97) was obtained by random sampling and five-fold cross-validation. Finally, SHapely Additive exPlanations, entropy-based feature importance, and permutation characteristic importance were used for global interpretation. The cation exchange capacity (CEC), total organic carbon (TOC), and Kaolin had the greatest effects on NH4+-N transport in the soil. The accumulated local effect offered a fundamental insight: When CEC > 6 cmol+ kg-1, and TOC > 40 g kg-1, the maximum resistance to NH4+-N transport within the soil was observed. This study provides a novel approach for predicting the impact of the soil environment on NH4+-N transport and guiding the establishment of an early-warning system of nutrient loss.


Asunto(s)
Compuestos de Amonio , Aprendizaje Automático , Nitrógeno , Suelo , Suelo/química , Compuestos de Amonio/análisis , Nitrógeno/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
3.
Environ Sci Technol ; 57(10): 4219-4230, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848599

RESUMEN

The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO43-) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P-FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P (≡(FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.


Asunto(s)
Calcio , Fósforo , Adsorción , Electricidad Estática , Coloides/química , Porosidad
4.
Ecotoxicol Environ Saf ; 249: 114402, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516624

RESUMEN

Excessive application of fertilizers has caused a high load of phosphorus (P) in the North China Plain. The fate of P and its effects on aquatic ecosystems depend on its chemical speciation in soils. However, few studies systematically investigated the transport and retardation of different P species in the fluvo-aquic soil. In this study, the transport of inorganic P (orthophosphate, PO4), organic P (phytic acid, PA) and particulate P (hydroxyapatite nanoparticles, nHAP) in the fluvo-aquic soil were investigated by column experiments, and their retardation from major soil components such as kaolin, CaCO3, Al2O3, and goethite (GT) was also investigated by monitoring breakthrough curves and fitting transport models. The transport of P species in fluvo-aquic soil followed the order of PO4 > PA > nHAP. A high fraction of increased clay and mineral particle-associated P (P-E) was observed for PO4 and PA; while significant Ca-associated P (P-Ca) for nHAP. Under the experimental conditions, both CaCO3 and GT were the most influential factors for PO4, PA, and nHAP retention. Goethite strongly inhibited PO4 transport due to its high PO4 adsorption capacity, while CaCO3 strongly inhibited PA transport due to its strong association with PA under alkaline conditions. Both CaCO3 and GT can severely inhibit nHAP transport due to the favorable electrostatic conditions as well as the Ca2+ bridging effect. These results indicated that CaCO3 played a key role in regulating the retention of organic P and particulate P in the calcareous soil, and also suggested the important role of Fe (hydr)oxides in controlling the transport of inorganic P, which could out-compete that of CaCO3.


Asunto(s)
Fósforo , Suelo , Ecosistema , Durapatita
5.
J Environ Manage ; 330: 117136, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584474

RESUMEN

The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/química , Hierro/química , Minerales/química , Carbón Orgánico/química , Adsorción , Óxidos/química , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(6): 3524-3534, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226472

RESUMEN

The transport of nanoplastics (NPs) through porous media is influenced by dissolved organic matter (DOM) released from agricultural organic inputs. Here, cotransport of NPs with three types of DOM (biocharDOM (BCDOM), wheat strawDOM (WSDOM), and swine manureDOM (SMDOM)) was investigated in saturated goethite (GT)-coated sand columns. The results showed that codeposition of 50 nm NPs (50NPs) with DOM occurred due to the formation of a GT-DOM-50NPs complex, while DOM loaded on GT-coated sand and 400 nm NPs (400NPs) aided 400NPs transport due to electrostatic repulsion. According to the quantum chemical calculation, humic acid and cellulose played a significant role in 50NPs retardation. Owing to its high concentration, moderate humification index (HIX), and cellulose content, SMDOM exhibited the highest retardation of 50NPs transport and promoting effect on 400NPs transport. Owing to a high HIX, the effect of BCDOM on the mobility of 400NPs was higher than that of WSDOM. However, high cellulose content in WSDOM caused it to exhibit a 50NPs retardation ability that was similar to that of BCDOM. Our results highlight the particle size selectivity and significant influence of DOM type on the transport of NPs and elucidate their quantum and colloidal chemical-interface mechanisms in a typical agricultural environment.


Asunto(s)
Materia Orgánica Disuelta , Microplásticos , Animales , Celulosa , Sustancias Húmicas/análisis , Compuestos de Hierro , Minerales , Tamaño de la Partícula , Porosidad , Arena , Porcinos
7.
Cell Mol Biol Lett ; 26(1): 19, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006215

RESUMEN

BACKGROUND: Some natural compounds inhibit cancer cell growth in various cancer cell lines with fewer side effects than traditional chemotherapy. Here, we explore the pharmacological effects and mechanisms of worenine (isolated from Coptis chinensis) against colorectal cancer. METHODS: The effects of worenine on colorectal cancer cell proliferation, colony formation and cell cycle distribution were measured. Glycolysis was investigated by examining glucose uptake and consumption, lactate production, and the activities and expressions of glycolysis enzymes (PFK-L, HK2 and PKM2). HIF-1α was knocked down and stimulated in vitro to investigate the underlying mechanisms. RESULTS: Worenine somewhat altered the glucose metabolism and glycolysis (Warburg effect) of cancer cells. Its anti-cancer effects and capability to reverse the Warburg effect were similar to those of HIF-1α siRNA and weakened by deferoxamine (an HIF-1α agonist). CONCLUSION: It is suggested that worenine targets HIF-1α to inhibit colorectal cancer cell growth, proliferation, cell cycle progression and the Warburg effect.


Asunto(s)
Benzodioxoles/farmacología , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinolizinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteolisis/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
8.
J Environ Sci (China) ; 100: 144-157, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279027

RESUMEN

Zero-valent iron amended biochar (ZVIB) has been proposed as a promising material in immobilizing heavy metals in paddy fields. In this study, the impacts of pH of ZVIB (pH 6.3 and pH 9.7) and watering management techniques (watering amount in the order of CON (control, 5/72)>3/72>1-3/72>3/100>1/72, with 5/72, for example, representing irrigation given to 5 cm above soil surface in 72 hr regular interval) on As and Cd bioavailability for rice and its grain yield (YieldBR) were investigated in a pot experiment. Brown rice As (AsBR) content was irrelative to the watering treatments, while significantly decreased (>50%) with the addition of both ZVIB materials. The diminutions of brown rice Cd (CdBR) content as well as the YieldBR were highly dependent on both the soil amendment materials' pH and watering amount. Among all the watering treatments, 3/72 treatment (15% less irrigation water than the CON) with ZVIB 6.3 amendment was the optimum fit for simultaneous reduction of AsBR (50%) and CdBR contents (19%) as well as for significant increment (12%) of the YieldBR. Although high pH (9.7) ZVIB application could also efficiently decrease As and Cd contents in brown rice, it might risk grain yield lost if appropriate (e.g. 3/72 in our study) watering management technique was not chosen. Therefore, ZVIB would be an environmentally friendly option as an amendment material with proper selection of watering management technique to utilize As and Cd co-contaminated arable soils safely for paddy cultivation.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Carbón Orgánico , Concentración de Iones de Hidrógeno , Hierro , Rizosfera , Suelo , Contaminantes del Suelo/análisis , Agua
9.
Ecotoxicol Environ Saf ; 189: 109926, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780207

RESUMEN

Synergistic biodegradation of earthworms and soil microorganisms plays a key role in the removal of organic pollutants in soil, yet microbially mediated processes remain unclear, especially regarding the succession of soil microbial interactions. Herein, soil biochemical evaluation, microbial community characterization, and interaction network construction were combined to understand the mechanisms dominating microbial community succession during synergistic bioremediation of metolachlor-polluted soils. The results of the network analysis indicated that metolachlor could render more complex relations but weaker connection strength among soil microorganisms. The addition of earthworms significantly alleviated the stress of metolachlor on soil microbial interactions and resulted in the restoration of interactions to a great extent. Additionally, the soil physicochemical properties, enzyme activities, and microbial community changed greatly with the addition of metolachlor and earthworms. Some soil microorganisms became significantly correlated with soil properties, metolachlor concentrations, and enzyme activities. These results, dominated by the succession of soil microbial communities, provide a new perspective for assessing the remediation effect of contaminated soil by organic pollutants.


Asunto(s)
Acetamidas/metabolismo , Biodegradación Ambiental , Microbiota , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Acetamidas/toxicidad , Animales , Bacterias/metabolismo , Micobioma , Oligoquetos/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
10.
Ecotoxicol Environ Saf ; 195: 110495, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213368

RESUMEN

The widespread use of phthalate esters (PAEs) in plastic products has made them ubiquitous in environment. In this study, 93 soil samples were collected in 31 plastic-sheds from one of China's largest vegetable production bases, Shouguang City, Shandong Province, to investigate the pollution characteristics and composition of PAEs in soils. Eleven PAEs were detected in the soil samples with the total concentration of 756-1590 µg kg-1 dry soil. Di (2-ethylhexyl) phthalate (DEHP), bis (2-n-butoxyethyl) phthalate (DBEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DBP) were the main pollutants with the highest concentrations. Moreover, soil properties, including pH, total organic carbon (TOC), soil enzyme activities, and soil microbial community characteristics, were monitored to explore the associated formation mechanisms. The concentration of PAEs in the plastic-shed vegetable soils was regionalized and the contamination degree in different regions was related to soil microbial characteristics and soil enzyme activities. Phthalate ester is positively correlated with catalase and sucrase, and negatively correlated with dehydrogenase and urease. Furthermore, some tolerant and sensitive bacteria were selected, which possibly could be used as potential indicators of PAE contamination in soil. Dimethyl phthalate (DMP) and DBP also had greater effects on the soil microbial community than other PAEs. The results will provide essential data and support the control of PAEs in plastic-shed vegetable soils in China.


Asunto(s)
Enzimas/análisis , Microbiota/efectos de los fármacos , Ácidos Ftálicos/análisis , Plásticos/química , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , China , Ciudades , Dibutil Ftalato/análogos & derivados , Dibutil Ftalato/análisis , Microbiología del Suelo , Verduras/crecimiento & desarrollo
11.
J Cell Biochem ; 120(9): 15268-15279, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31172560

RESUMEN

Irritable bowel syndrome (IBS) is a common disorder of unknown etiology. Studies have found a close relation between IBS and microRNAs (miRNAs), but the study concerning the relationship between IBS and miR-181c-5p in IBS is still blank. Thus, this study aims to explore the role of miR-181c-5p in IBS via interleukin 1α (IL1A). Initially, microarray analysis was used to retrieve the genes related to IBS and to predict miRNAs regulating IL1A gene. IBS model was then established with abdominal withdraw reflection (AWR) and Bristol stool grading in mice measured. Afterwards, the functional role of miR-181c-5p in IBS was determined using the ectopic expression, depletion and reporter assay experiments, as well as miR-181c-5p and IL1A expression detected. Subsequently, expression of tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and IL-6 were detected to further determine the effects of miR-181c-5p and IL1A on inflammation in IBS. miR-181c-5p and IL1A might be involved in IBS. miR-181c-5p was found to be decreased while IL1A was increased in IBS rats. In addition, miR-181c-5p could target and inhibit expression of IL1A, and IBS mice exhibited elevated AWR and Bristol stool grading, namely 6 to 7 points (70.4 [38 of 54]). Moreover, with the overexpression of miR-181c-5p or silencing of IL1A, the expression of TNF-α, IL-2, and IL-6 was decreased. Collectively, this study suggested that overexpressed miR-181c-5p could silence IL1A, thus inhibiting low-grade inflammation in IBS rats. miR-181c-5p/IL1A is expected to serve as a novel target for the treatment of IBS.


Asunto(s)
Silenciador del Gen , Inflamación/genética , Inflamación/patología , Interleucina-1alfa/genética , Síndrome del Colon Irritable/genética , MicroARNs/metabolismo , Animales , Secuencia de Bases , Colon/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Síndrome del Colon Irritable/patología , Masculino , MicroARNs/genética , Modelos Biológicos , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
12.
Int J Psychol ; 54(1): 144-154, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28635144

RESUMEN

Given its major transformations in recent decades, China has figured prominently in research on cultural change. Previous research converges in showing a general trend towards individualism in contemporary China while noting that rising individualism tends to coexist with enduring collectivism. To further understand this, we tested whether perceived traditional importance of cultural values would modulate the trajectory of cultural change reflected in word usage frequencies in published books. We re-analysed Google's Chinese corpus since 1980 based on a broad sample of words associated with individualism-collectivism. We replicated the pattern of rising individualism and declining collectivism among words of modest and low perceived traditional importance. Most important, however, collectivistic words of high perceived traditional importance increased in usage frequencies with time, thus departing from the general trend towards individualism. Overall, our research underscores the role of core culture in cultural maintenance during times of rapid cultural change.


Asunto(s)
Evolución Cultural , Medios de Comunicación Sociales/instrumentación , China , Humanos , Lenguaje
13.
Environ Sci Technol ; 52(18): 10522-10531, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30078311

RESUMEN

The surface complexation modeling of metal adsorption to birnessites is in its infancy compared to the charge-distribution multisite ion complexation (CD-MUSIC) models for iron/aluminum (hydr)oxides. Therefore, using X-ray diffraction with Rietveld refinement to obtain the reactive sites and their densities, a CD-MUSIC model combined with a Stern-Gouy-Chapman electrical double layer (EDL) model for the external surface and a Donnan model for the interlayer surface is developed for birnessites with different Mn average oxidation state (MnAOS). Proton affinity constants and the charge distributions of Pb surface complexes were calculated a priori. By fitting Pb adsorption data to the model the obtained equilibrium constants (log KPb) of Pb complexes were 6.9-10.9 for the double-corner-sharing and double-edge-sharing Pb2+ complexes on the edge sites and 2.2-6.5 for the triple-corner-sharing Pb2+ complex on the vacancies. The larger log KPb value was obtained for higher MnAOS. Speciation calculations showed that with increasing MnAOS from 3.67 to 3.92 the interlayer surface contribution to the total Pb2+ adsorption increased from 43.2% to 48.6%, and the vacancy contribution increased from 43.9% to 54.7%. The vacancy contribution from interlayer surface was predominant. The present CD-MUSIC-EDL model contributes to understand better the difference in metal adsorption mechanism between birnessite and iron/aluminum (hydr)oxides.


Asunto(s)
Plomo , Adsorción , Óxidos
14.
Environ Sci Technol ; 52(3): 1348-1356, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29319308

RESUMEN

The effect of adsorbed soil fulvic (JGFA) and humic acid (JGHA) on Pb binding to goethite was studied with the ligand charge distribution (LCD) model and X-ray absorption fine structure (XAFS) spectroscopy analysis. In the LCD model, the adsorbed small JGFA particles were evenly located in the Stern layer, but the large JGHA particles were distributed over the Stern layer and the diffuse layer, which mainly depended on the JGHA diameter and concentrations. Specific interactions of humic substances (HS) with goethite were modeled by inner-sphere complexes between the -FeOH20.5+ of goethite and the -COO- of HS and by Pb bridges between surface sites and COO- groups of HS. At low Pb levels, nearly 100% of Pb was bound as Pb bridges for both JGFA and JGHA. At high Pb levels and low HS loading, Pb-goethite almost dominated over the entire studied pH range, but at high HS loading, the primary species was goethite-HS-Pb at acidic pH and goethite-Pb at alkaline pH. Compared with JGFA, there was a constant contribution of Pb bridges of about 10% for JGHA. The linear combination fit of EXAFS, using Pb-HS and Pb-goethite as references, indicated that with increased HS loading more Pb was bound to adsorbed HS and less to goethite, which supported the LCD calculations.


Asunto(s)
Sustancias Húmicas , Suelo , Adsorción , Concentración de Iones de Hidrógeno , Compuestos de Hierro , Plomo , Minerales
15.
Ecotoxicology ; 24(10): 2224-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407708

RESUMEN

In this study, the characteristics of cadmium (Cd) uptake by roots and translocation from roots to leaves of two eggplant species (Solanum melongena and Solanum torvum) under relatively low Cd concentrations were investigated using stable (108)Cd isotope through a number of hydroponic experiments. The uptake and translocation of (108)Cd was compared with those of (70)Zn and (15)N. The results showed more (108)Cd was loaded to the vascular channels and translocated upward to the leaves in S. melongena than in S. torvum, while the (108)Cd concentrations were significantly lower in the roots of S. melongena than in S. torvum. When the phloem and xylem were wounded by grafting treatments, the foliar (108)Cd concentrations were decreased by more than 66% regardless of the rootstock species, whereas the uptake of (108)Cd in the root was not inhibited by grafting. Similar grafting effects were observed for (70)Zn. Hence, wounding phloem and xylem by grafting disturbed the upward transport of (108)Cd and (70)Zn to the eggplant leaves. Similarly, interruption of the phloem by the girdling treatment reduced the concentrations of (108)Cd in the leaves of S. melongena by approximately 51%, though the uptake of (108)Cd by roots was not reduced by the interruption of phloem. In contrast, neither (70)Zn concentrations nor stable N isotope ratio (δ(15)N) values in the roots and leaves of S. melongena were significantly influenced by the interruption of phloem. In conclusion, the phloem played a dominant role in the long-distance transport of Cd from the root to the leaf of S. melongena, whereas the xylem was the main channel for the translocation of Zn and N.


Asunto(s)
Cadmio/farmacocinética , Contaminantes del Suelo/farmacocinética , Solanum melongena/metabolismo , Transporte Biológico , Floema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Xilema/metabolismo
16.
Environ Sci Technol ; 48(8): 4307-16, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24601526

RESUMEN

Colloids may facilitate the transport of trace elements and nutrients like phosphate in soil. In this study, we characterized soil colloids (<0.45 µm), extracted from four agricultural soils by Na-bicarbonate and Na-pyrophosphate, by two complementary analytical techniques; asymmetric flow field-flow fractionation (AF4) and X-ray absorption spectroscopy (XAS). The combined results from AF4 and XAS show that colloidal Fe is present as (i) free Fe-(hydr)oxide nanoparticles, (ii) Fe-(hydr)oxides associated with clay minerals, and (iii) Fe in clay minerals. Free Fe-(hydr)oxide nanoparticles, which can be as small as 2-5 nm, are extracted with Na-pyrophosphate but not with Na-bicarbonate, except for one soil. In contrast, Fe-(hydr)oxides associated with clay minerals are dispersed by both extractants. XAS results show that the speciation of Fe in the colloidal fractions closely resembles the speciation of Fe in the bulk soil, indicating that dispersion of colloidal Fe from the studied soils was rather unselective. In one Fe-rich soil, colloidal Fe was dominantly dispersed in the form of free Fe-(hydr)oxide nanoparticles. In the other three soils, dispersed Fe-(hydr)oxides were dominantly associated with clay minerals, suggesting that their dispersion as free nanoparticles was inhibited by strong attachment. However, in these soils, Fe-(hydr)oxides can be dispersed as oxide-clay associations and may as such facilitate the transport of trace elements.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Hierro/análisis , Suelo/química , Espectroscopía de Absorción de Rayos X/métodos , Carbono/análisis , Coloides , Ditionita/química , Hidróxidos/química , Nanopartículas/análisis , Oxalatos/química , Fosfatos/análisis , Contaminantes del Suelo/análisis , Rayos Ultravioleta
17.
Environ Sci Technol ; 48(10): 5700-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24742258

RESUMEN

Multi-surface models are widely used to assess the potential ecotoxicological risk in metal-contaminated soils. Their accuracy in predicting metal speciation in soils with low metal levels was not yet tested. Now highly sensitive analytical techniques are available to experimentally validate such models at low concentration levels. The objective of this study was to test the accuracy of a multi-surface model to predict the Zn(2+) concentration and to improve our understanding of Zn bioavailability in low-Zn soils. High-Zn soils were included as controls. Model parameters were determined independently on the basis of earlier peer-reviewed publications. Model output was validated against free Zn(2+) concentrations determined with the soil column Donnan membrane technique in a range of soils varying in potentially available Zn, organic matter, clay silicate, and iron (hydr)oxide contents and pH. Deviations between predicted Zn(2+) concentrations and experimentally determined values over the whole Zn concentration range were less or equal to the experimental standard error, except for one low-Zn soil. The Zn(2+) concentration was mainly controlled by adsorption, where organic matter was predicted to be the dominant soil sorbent. The predicted Zn(2+) concentration depends more sensitively upon changes of the reactive Zn pool (application of 0.6, 1.2, 2.4, and 3.6 mg of Zn kg(-1) of soil) and organic matter content (± 0.2 and 0.4%) than pH changes (± 0.5 and 1 pH unit).


Asunto(s)
Modelos Teóricos , Suelo/química , Zinc/análisis , Adsorción , Disponibilidad Biológica , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Iones/análisis , Compuestos Orgánicos/análisis , Contaminantes del Suelo/análisis
18.
J Colloid Interface Sci ; 660: 522-533, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262179

RESUMEN

HYPOTHESIS: The competitive interaction of oxyanions and humic nanoparticles (HNPs) with metal (hydr)oxide surfaces can be used to trace the ligand and charge distribution of adsorbed HNPs in relation to heterogeneity, fractionation, and conformational change. EXPERIMENTS: Batch adsorption experiments of HNPs on goethite were performed in the absence and presence of phosphate. The size of HNPs was measured with size exclusion chromatography. The Ligand and Charge Distribution (LCD) model framework was further developed to describe the simultaneous interaction of HNPs and phosphate with goethite. FINDINGS: Preferential adsorption decreases the mean molar mass of adsorbed HNPs, independent of the phosphate presence, showing a linear dependency on the adsorbed HNPs fraction. Phosphate ion can be used as a probe to trace the distribution of functional groups and the variation in affinity of HNPs. The spatial distribution of adsorbed HNPs is driven by the potential gradients in the electrical double layer, which changes the conformation of the adsorbed HNPs. At the particle level, the adsorption of heterogeneous HNPs has an affinity distribution, which can be explained by the variation in molar mass (kDa) and density of the functional groups (mol kg-1) of the HNPs. The presented model can simultaneously describe the competitive adsorption of HNPs and phosphate in a consistent manner.

19.
Bioresour Technol ; : 131463, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277055

RESUMEN

The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline. Concurrently, the suitability of different immobilization materials were assessed, with reed charcoal-immobilized consortia exhibiting the highest efficiency in removing tetracycline (92%). Similarly, wheat-bran-loaded bacterial consortia displayed a remarkable 11.43-fold increase in tetracycline removal compared with free consortia. Moreover, adding the carriers increased the nutrients, while the activities of both intracellular and extracellular catalases increased significantly post-immobilization, thus highlighting this enzyme's crucial role in tetracycline degradation. Finally, analysis of the microbial communities revealed the prevalence of Achromobacter and Parapedobacter, signifying their potential as key degraders. Overall, the immobilized consortia not only hold promise for application in the bioremediation of tetracycline-contaminated environment but also provide theoretical underpinnings for environmental remediation by microorganisms.

20.
J Hazard Mater ; 480: 135818, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39307017

RESUMEN

Polysaccharides with various molecular structures and morphology may influence the aggregation kinetics of nanoplastics. This study used various characterization methods to elucidate the heteroaggregation mechanism of polystyrene nanoplastics (PSNPs) in the presence of polysaccharides (ionic strength (IS) 1-800 mM NaCl and 0.01-60 mM CaCl2). The results showed that under high IS, cellulose (CL) accelerated the heteroaggregation of PSNPs, and the aggregation rate of PSNPs increased by approximately 62.05 %, while amylose (AM) had little effect (10.38 %). Compared with AM (43.2 nm), the morphology of the CL (78.4 nm) gully had improved surface roughness, leading to its decisive role in the heteroaggregation of PSNPs. Quantum chemistry calculations indicated that van der Waals forces of PSNPs-CL systems (-217.28 kJ mol-1) were stronger than those of PSNPs-AM systems (-184.62 kJ mol-1) based on the subtle molecular conformation differences between CL and AM (opposite and same sides of OH groups in CL and AM, respectively). The morphology and molecular conformation of polysaccharides collaboratively controlled the heteroaggregation of PSNPs. Because the morphology of polysaccharides was based on their molecular conformation, the latter is the most critical factor. These findings provide new insights into the effects of PSNPs stability in the environment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda