Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Oncotarget ; 15: 159-174, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441437

RESUMEN

GZ17-6.02, a synthetically manufactured compound containing isovanillin, harmine and curcumin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with a recommended phase 2 dose (RP2D) of 375 mg PO BID. GZ17-6.02 was more efficacious as a single agent at killing multiple myeloma cells than had previously been observed in solid tumor cell types. GZ17-6.02 interacted with proteasome inhibitors in a greater than additive fashion to kill myeloma cells and alone it killed inhibitor-resistant cells to a similar extent. The drug combination of GZ17-6.02 and bortezomib activated ATM, the AMPK and PERK and inactivated ULK1, mTORC1, eIF2α, NFκB and the Hippo pathway. The combination increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM, and reduced the levels of BCL-XL and MCL1. GZ17-6.02 interacted with bortezomib to enhance autophagosome formation and autophagic flux, and knock down of ATM, AMPKα, ULK1, Beclin1 or ATG5 significantly reduced both autophagy and tumor cell killing. Knock down of BAK and BIM significantly reduced tumor cell killing. The expression of HDACs1/2/3 was significantly reduced beyond that previously observed in solid tumor cells and required autophagy. This was associated with increased acetylation and methylation of histone H3. Combined knock down of HDACs1/2/3 caused activation of ATM and the AMPK and caused inactivation of ULK1, mTORC1, NFκB and the Hippo pathway. HDAC knock down also enhanced ATG13 phosphorylation, increased BAK levels and reduced those of BCL-XL. Collectively, our present studies support performing additional in vivo studies with multiple myeloma cells.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Mieloma Múltiple/tratamiento farmacológico , Bortezomib/farmacología , Proteínas Quinasas Activadas por AMP , Beclina-1 , Antineoplásicos/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina
2.
Oncotarget ; 15: 124-133, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329728

RESUMEN

GZ17-6.02, composed of curcumin, harmine and isovanillin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with an RP2D of 375 mg PO BID. The biology of GZ17-6.02 in malignant T cells and in particular those derived from mycosis fungoides (MF) patients, has not been studied. GZ17-6.02 alone and in combination with standard-of-care agents was effective in killing MF cells. All three components are necessary for optimal killing of MF cells. GZ17-6.02 activated ATM, the AMPK, NFκB and PERK and inactivated ERK1/2, AKT, ULK1, mTORC1, eIF2α, and reduced the expression of BCL-XL and MCL1. GZ17-6.02 increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM. GZ17-6.02 in a dose-dependent fashion enhanced autophagosome formation and autophagic flux, and tumor cell killing. Signaling by ATM and AMPK were both required for efficient killing but not for the dose-response effect whereas ER stress (eIF2α) and macroautophagy (Beclin1, ATG5) were required for both efficient killing and the dose-response. Knock down of the death receptor CD95 reduced killing by ~20% and interacted with autophagy inhibition to further reduce killing, collectively, by ~70%. Inhibition of autophagy and knock down of death-mediators downstream of the mitochondrion, AIF and caspase 3, almost abolished tumor cell killing. Hence in MF cells, GZ17-6.02 is a multi-factorial killer, utilizing ER stress, macroautophagy, death receptor signaling and directly causing mitochondrial dysfunction.


Asunto(s)
Antineoplásicos , Micosis Fungoide , Neoplasias Cutáneas , Humanos , Bexaroteno/farmacología , Proteínas Quinasas Activadas por AMP , Beclina-1/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Receptores de Muerte Celular
3.
Oncotarget ; 15: 328-344, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758815

RESUMEN

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Humanos , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Sci Rep ; 14(1): 1955, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263212

RESUMEN

Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.


Asunto(s)
Antineoplásicos , Linfoma Cutáneo de Células T , Micosis Fungoide , Neoplasias Cutáneas , Humanos , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Proteómica , Calidad de Vida , Perfilación de la Expresión Génica , Mamíferos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda