Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Nature ; 590(7846): 433-437, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568814

RESUMEN

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

2.
Proc Natl Acad Sci U S A ; 121(30): e2400168121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008662

RESUMEN

The perfluorocarbons tetrafluoromethane (CF4, PFC-14) and hexafluoroethane (C2F6, PFC-116) are potent greenhouse gases with near-permanent atmospheric lifetimes relative to human timescales and global warming potentials thousands of times that of CO2. Using long-term atmospheric observations from a Chinese network and an inverse modeling approach (top-down method), we determined that CF4 emissions in China increased from 4.7 (4.2-5.0, 68% uncertainty interval) Gg y-1 in 2012 to 8.3 (7.7-8.9) Gg y-1 in 2021, and C2F6 emissions in China increased from 0.74 (0.66-0.80) Gg y-1 in 2011 to 1.32 (1.24-1.40) Gg y-1 in 2021, both increasing by approximately 78%. Combined emissions of CF4 and C2F6 in China reached 78 Mt CO2-eq in 2021. The absolute increase in emissions of each substance in China between 2011-2012 and 2017-2020 was similar to (for CF4), or greater than (for C2F6), the respective absolute increase in global emissions over the same period. Substantial CF4 and C2F6 emissions were identified in the less-populated western regions of China, probably due to emissions from the expanding aluminum industry in these resource-intensive regions. It is likely that the aluminum industry dominates CF4 emissions in China, while the aluminum and semiconductor industries both contribute to C2F6 emissions. Based on atmospheric observations, this study validates the emission magnitudes reported in national bottom-up inventories and provides insights into detailed spatial distributions and emission sources beyond what is reported in national bottom-up inventories.

3.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874561

RESUMEN

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera , China , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Fluorocarburos/análisis , Teorema de Bayes , Politetrafluoroetileno , Ciclobutanos
4.
Environ Sci Technol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009035

RESUMEN

Nitrogen trifluoride (NF3) is a potent and long-lived greenhouse gas that is widely used in the manufacture of semiconductors, photovoltaic cells, and flat panel displays. Using atmospheric observations from eight monitoring stations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and inverse modeling with a global 3-D atmospheric chemical transport model (GEOS-Chem), we quantify global and regional NF3 emission from 2015 to 2021. We find that global emissions have grown from 1.93 ± 0.58 Gg yr-1 (± one standard deviation) in 2015 to 3.38 ± 0.61 Gg yr-1 in 2021, with an average annual increase of 10% yr-1. The available observations allow us to attribute significant emissions to China (0.93 ± 0.15 Gg yr-1 in 2015 and 1.53 ± 0.20 Gg yr-1 in 2021) and South Korea (0.38 ± 0.07 Gg yr-1 to 0.65 ± 0.10 Gg yr-1). East Asia contributes around 73% of the global NF3 emission increase from 2015 to 2021: approximately 41% of the increase is from emissions from China (with Taiwan included), 19% from South Korea, and 13% from Japan. For Japan, which is the only one of these three countries to submit annual NF3 emissions to UNFCCC, our bottom-up and top-down estimates are higher than reported. With increasing demand for electronics, especially flat panel displays, emissions are expected to further increase in the future.

5.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656597

RESUMEN

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Asunto(s)
Cloroformo , Ozono Estratosférico , Regiones Antárticas , China , Desinfección
6.
Environ Sci Technol ; 57(18): 7217-7229, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126109

RESUMEN

Halogenated gases include ozone-depleting substances and greenhouse gases, such as chlorofluorocarbons, halons, hydrochlorofluorocarbons, hydrofluorocarbons, and perfluorinated gases. In situ atmospheric observations of major halogenated gases were conducted at the Shangdianzi (SDZ) background station, China, from October 2020 to September 2021 using ODS5-pro, a newly developed measurement system. The measurement time series of 36 halogenated gases showed occasional pollution events, where background conditions represented 25% (CH2Cl2) to 81% (CF3Cl, CFC-13) of the measurements. The annual mean background mole fractions of most species at SDZ were consistent with those obtained at the Mace Head station in Ireland. The background conditions were distinguished from pollution events, and the enhanced mole fractions were used to estimate the emissions of four categories of fluorinated gases (F-gases) from northern China using a tracer ratio method. The CO2-equivalent (CO2-equiv) emission of F-gases from northern China reached 181 ± 18 Tg year-1 during 2020-2021. Among the four categories of F-gases estimated, SF6 accounted for the highest proportion of CO2-equiv emissions (24%), followed by HFC-23 (22%), HFC-125 (17%), HFC-134a (13%), NF3 (10%), CF4 (5.9%), HFC-143a (3.9%), HFC-32 (3.4%), and HFC-152a (0.2%).


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Dióxido de Carbono , Monitoreo del Ambiente/métodos , China
7.
J Radiol Prot ; 40(3): 911-919, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32840237

RESUMEN

Effective preparedness and response to an atmospheric release following a radiological incident relies on information concerning the source, transport and eventual removal of the contaminant. A notable improvement to emergency preparedness and response in the UK to airborne releases of radiological contaminants can be achieved through the integration of information sources, in particular environmental radiological measurements and atmospheric-dispersion modelling. A one-day workshop was organised by the UK Met Office and the University of Bristol, comprising private nuclear facility operators, public bodies, academia and others, on 6 February 2020 in Bristol, UK. The workshop reviewed the current capabilities and challenges of measurements and modelling of airborne radiological contaminants and their integration, and identified improvement pathways. This memorandum provides a summary of recommendations from the workshop.


Asunto(s)
Contaminantes Radiactivos del Aire , Planificación en Desastres , Monitoreo de Radiación/métodos , Liberación de Radiactividad Peligrosa , Congresos como Asunto , Humanos , Reino Unido
8.
Nat Commun ; 15(1): 1997, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443346

RESUMEN

Sulfur hexafluoride (SF6) is a potent greenhouse gas. Here we use long-term atmospheric observations to determine SF6 emissions from China between 2011 and 2021, which are used to evaluate the Chinese national SF6 emission inventory and to better understand the global SF6 budget. SF6 emissions in China substantially increased from 2.6 (2.3-2.7, 68% uncertainty) Gg yr-1 in 2011 to 5.1 (4.8-5.4) Gg yr-1 in 2021. The increase from China is larger than the global total emissions rise, implying that it has offset falling emissions from other countries. Emissions in the less-populated western regions of China, which have potentially not been well quantified in previous measurement-based estimates, contribute significantly to the national SF6 emissions, likely due to substantial power generation and transmission in that area. The CO2-eq emissions of SF6 in China in 2021 were 125 (117-132) million tonnes (Mt), comparable to the national total CO2 emissions of several countries such as the Netherlands or Nigeria. The increasing SF6 emissions offset some of the CO2 reductions achieved through transitioning to renewable energy in the power industry, and might hinder progress towards achieving China's goal of carbon neutrality by 2060 if no concrete control measures are implemented.

9.
Nat Commun ; 12(1): 7279, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907196

RESUMEN

With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213-245) Gg yr-1 in 2011 to 628 (599-658) Gg yr-1 in 2019, with an average annual increase of 13 (12-15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281-427) Gg yr-1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.

10.
J Environ Radioact ; 220-221: 106304, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32560891

RESUMEN

For the first time since the Chernobyl accident, detectable concentrations of ruthenium-106 were measured across Europe in September and October 2017. The source of this radioactive cloud remains unconfirmed. In this paper we present a forensic inverse modelling study to simultaneously estimate the source location, timing and magnitude of the unexpected ruthenium-106 release using 473 measurements of atmospheric concentration. To do this, we introduce a novel method, which estimates the uncertainty in the often unknown transport error using a Markov chain Monte Carlo approach. We corroborate the conclusions of other studies which suggest the source location is in the Southern Ural region of Russia, where the Mayak nuclear complex is located. Assuming that the Mayak nuclear complex is the most plausible release location, the method estimates that 441±13 TBq was released 12:00-18:00 UTC 24 September 2017, assuming a six hour release window.


Asunto(s)
Monitoreo de Radiación , Europa (Continente) , Liberación de Radiactividad Peligrosa , Federación de Rusia , Radioisótopos de Rutenio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda