Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 427(6977): 817-21, 2004 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-14985755

RESUMEN

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10(-18) s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10(-15) s) extreme ultraviolet (XUV) light pulses has stimulated the extension of techniques of femtochemistry into the attosecond regime. Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse obtains 'tomographic images' of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current approximately 750-nm laser probe and approximately 100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.

2.
Ultramicroscopy ; 102(2): 93-100, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15590132

RESUMEN

Coherent soft X-ray sources open the way to new capabilities in high-resolution imaging, site- and element-specific spectroscopy and biomicroscopy. In this paper we demonstrate imaging with a table-top soft X-ray microscope. By combining a laser driven high-harmonic light source, optimized for having the maximum brightness at around 100 eV, a pair of multilayer mirrors to select a narrow spectral band and acting simultaneously as a condenser and a Fresnel zone plate as microscope objective, we were able to resolve 200 nm structures of a diatom sample. Further, the pulsed nature of our X-ray source offers the possibility of time-resolved spectromicroscopy with a temporal resolution in the order of a few femtoseconds.


Asunto(s)
Diagnóstico por Imagen/instrumentación , Microscopía/instrumentación , Animales , Diatomeas/ultraestructura , Óptica y Fotónica , Rayos X
3.
Nature ; 419(6909): 803-7, 2002 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-12397349

RESUMEN

The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9(-0.9)(+1.0) fs of M-shell vacancies of krypton in such a pump-probe experiment.

4.
Science ; 305(5688): 1267-9, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15333834

RESUMEN

The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

5.
Science ; 297(5584): 1144-8, 2002 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-12114530

RESUMEN

Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda