Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(20): 10921-10926, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366661

RESUMEN

Flower biomass varies widely across the angiosperms. Each plant species invests a given amount of biomass to construct its sex organs. A comparative understanding of how this limited resource is partitioned among primary (male and female structures) and secondary (petals and sepals) sexual organs on hermaphrodite species can shed light on general evolutionary processes behind flower evolution. Here, we use allometries relating different flower biomass components across species to test the existence of broad allocation patterns across the angiosperms. Based on a global dataset with flower biomass spanning five orders of magnitude, we show that heavier angiosperm flowers tend to be male-biased and invest strongly in petals to promote pollen export, while lighter flowers tend to be female-biased and invest more in sepals to insure their own seed set. This result demonstrates that larger flowers are not simple carbon copies of small ones, indicating that sexual selection via male-male competition is an important driver of flower biomass evolution and sex allocation strategies across angiosperms.


Asunto(s)
Evolución Biológica , Flores/fisiología , Magnoliopsida/fisiología , Biomasa , Gentiana , Lepidium , Nymphaea , Orchidaceae , Polen , Polinización , Semillas , Selección Genética , Especificidad de la Especie
2.
New Phytol ; 235(3): 842-847, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35488498

RESUMEN

Startup plants include seedlings and basal and epicormic resprouts. It has long been held that startups have different strategies from adult plants, but theory for what trait differences to expect is limited and not yet quantitatively tested. Three applicable concepts are analogous to human startup firms, R-shift, and trait-growth theory. All three suggest startups should be built with lower construction costs than established plants. This appears to be almost always true in terms of leaf mass per area (LMA), though many comparisons are complicated by the startups growing in lower light. Trait-growth theory predicts LMA should increase progressively with height or total leaf area, driven by higher conductive-pathway costs associated with each unit leaf area, and by greater reward from slowing leaf turnover. Basal resprouts often have somewhat higher LMA than seedlings, but possibly this is simply because they are larger. A number of eminently testable questions are identified. Prospects are good for a theoretically cogent and field-tested body of knowledge about plant startups.


Asunto(s)
Hojas de la Planta , Plantas , Ecología , Plantones
3.
Nature ; 529(7585): 204-7, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26700807

RESUMEN

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.


Asunto(s)
Fenotipo , Árboles/anatomía & histología , Árboles/fisiología , Bosques , Internacionalidad , Modelos Biológicos , Hojas de la Planta/fisiología , Árboles/crecimiento & desarrollo , Madera/análisis
4.
Nature ; 529(7585): 167-71, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26700811

RESUMEN

Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.


Asunto(s)
Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Biodiversidad , Bases de Datos Factuales , Variación Genética , Internacionalidad , Modelos Biológicos , Nitrógeno/análisis , Tamaño de los Órganos , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Plantas/clasificación , Reproducción , Semillas/anatomía & histología , Selección Genética , Especificidad de la Especie
5.
Ecol Lett ; 24(7): 1487-1504, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33896087

RESUMEN

Bacteria and archaea have very different ecology compared to plants. One similarity, though, is that much discussion of their ecological strategies has invoked concepts such as oligotrophy or stress tolerance. For plants, so-called 'trait ecology'-strategy description reframed along measurable trait dimensions-has made global syntheses possible. Among widely measured trait dimensions for bacteria and archaea three main axes are evident. Maximum growth rate in association with rRNA operon copy number expresses a rate-yield trade-off that is analogous to the acquisitive-conservative spectrum in plants, though underpinned by different trade-offs. Genome size in association with signal transduction expresses versatility. Cell size has influence on diffusive uptake and on relative wall costs. These trait dimensions, and potentially others, offer promise for interpreting ecology. At the same time, there are very substantial differences from plant trait ecology. Traits and their underpinning trade-offs are different. Also, bacteria and archaea use a variety of different substrates. Bacterial strategies can be viewed both through the facet of substrate-use pathways, and also through the facet of quantitative traits such as maximum growth rate. Preliminary evidence shows the quantitative traits vary widely within substrate-use pathways. This indicates they convey information complementary to substrate use.


Asunto(s)
Archaea , Ecología , Archaea/genética , Bacterias/genética , Fenotipo , Plantas
6.
Am Nat ; 198(2): 253-267, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34260875

RESUMEN

AbstractIn community ecology, it is widely assumed that organisms with similar traits compete more intensely with one another for resources. This assumption is often encoded into theory and empirical tests via a unimodal competition function, which predicts that per capita competitive effect declines with separation in traits. Yet it remains unknown how well this function represents the true effect of traits on competitive outcomes, especially for long-lived plant communities, where lifetime fitness is difficult to estimate. Here, we evaluate the shape of competition functions embedded in two resource-based (RB) models, wherein plants compete for shared, essential resources. In the first RB model individuals compete for two essential nutrients, and in the second they compete for light in a size-based successional setting. We compared the shapes of the competition functions that emerged from interactions within these RB models to the unimodal function and others shapes commonly applied. In few instances did the trait-based competition function emerging from the RB model even vaguely resemble any of the shapes previously used. The mismatch between these two approaches suggests that theory derived using fixed competition functions based on trait separation may not apply well to plant systems, where individuals compete for shared resources. The more promising path will be to model depletion of resources by populations in relation to their traits, with its consequences for fitness landscapes and competitive exclusion.


Asunto(s)
Ecología , Plantas , Humanos , Fenotipo
7.
Proc Biol Sci ; 288(1946): 20202830, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653143

RESUMEN

If collecting research data is perceived as poorly rewarded compared to data synthesis and analysis, this can slow overall research progress via two effects. People who have already collected data may be slow to make it openly accessible. Also, researchers may reallocate effort from collecting fresh data to synthesizing and analysing data already accessible. Here, we advocate for a second career currency in the form of data contributions statements embedded within applications for jobs, promotions and research grants. This workable step forward would provide for peer opinion to operate across thousands of selection and promotion committees and granting panels. In this way, fair valuation of data contributions relative to publications could emerge.


Asunto(s)
Investigadores , Humanos
8.
Proc Natl Acad Sci U S A ; 115(49): 12459-12464, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446609

RESUMEN

Tree death drives population dynamics, nutrient cycling, and evolution within plant communities. Mortality variation across species is thought to be influenced by different factors relative to variation within species. The unified model provided here separates mortality rates into growth-dependent and growth-independent hazards. This model creates the opportunity to simultaneously estimate these hazards both across and within species. Moreover, it provides the ability to examine how species traits affect growth-dependent and growth-independent hazards. We derive this unified mortality model using cross-validated Bayesian methods coupled with mortality data collected over three census intervals for 203 tropical rainforest tree species at Barro Colorado Island (BCI), Panama. We found that growth-independent mortality tended to be higher in species with lower wood density, higher light requirements, and smaller maximum diameter at breast height (dbh). Mortality due to marginal carbon budget as measured by near-zero growth rate tended to be higher in species with lower wood density and higher light demand. The total mortality variation attributable to differences among species was large relative to variation explained by these traits, emphasizing that much remains to be understood. This additive hazards model strengthens our capacity to parse and understand individual-level mortality in highly diverse tropical forests and hence to predict its consequences.


Asunto(s)
Bosque Lluvioso , Árboles/crecimiento & desarrollo , Islas , Longevidad , Panamá , Especificidad de la Especie
9.
Nature ; 506(7486): 89-92, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24362564

RESUMEN

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Asunto(s)
Evolución Biológica , Clima Frío , Ecosistema , Congelación , Magnoliopsida/anatomía & histología , Magnoliopsida/fisiología , Xilema/anatomía & histología , Funciones de Verosimilitud , Filogeografía , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Semillas/fisiología , Factores de Tiempo , Madera/anatomía & histología , Madera/fisiología , Xilema/fisiología
10.
Proc Natl Acad Sci U S A ; 114(13): E2719-E2728, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28283658

RESUMEN

To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.


Asunto(s)
Biodiversidad , Bosques , Modelos Teóricos , Dinámica Poblacional
11.
New Phytol ; 222(1): 526-542, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30697746

RESUMEN

Almost all plant species interact with one or more symbioses somewhere within their distribution range. Bringing together plant trait data and growth responses to symbioses spanning 552 plant species, we provide for the first time on a large scale (597 studies) a quantitative synthesis on plant performance differences between eight major types of symbiosis, including mycorrhizas, N-fixing bacteria, fungal endophytes and ant-plant interactions. Frequency distributions of plant growth responses varied considerably between different types of symbiosis, in terms of both mean effect and 'risk', defined here as percentage of experiments reporting a negative effect of symbiosis on plants. Contrary to expectation, plant traits were poor predictors of growth response across and within all eight symbiotic associations. Our analysis showed no systematic additive effect when a host plant engaged in two functionally different symbioses. This synthesis suggests that plant species' ecological strategies have little effect in determining the influence of a symbiosis on host plant growth. Reliable quantification of differences in plant performance across symbioses will prove valuable for developing general hypotheses on how species become engaged in mutualisms without a guarantee of net returns.


Asunto(s)
Plantas/microbiología , Simbiosis/fisiología , Bases de Datos como Asunto , Desarrollo de la Planta , Sesgo de Publicación
12.
Am Nat ; 192(1): E37-E47, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897799

RESUMEN

Branch formation in trees has an inherent tendency toward exponential growth, but exponential growth in the number of branches cannot continue indefinitely. It has been suggested that trees balance this tendency toward expansion by also losing branches grown in previous growth cycles. Here, we present a model for branch formation and branch loss during ontogeny that builds on the phenomenological assumption of a branch carrying capacity. The model allows us to derive approximate analytical expressions for the number of tips on a branch, the distribution of growth modules within a branch, and the rate and size distribution of tree wood litter produced. Although limited availability of data makes empirical corroboration challenging, we show that our model can fit field observations of red maple (Acer rubrum) and note that the age distribution of discarded branches predicted by our model is qualitatively similar to an empirically observed distribution of dead and abscised branches of balsam poplar (Populus balsamifera). By showing how a simple phenomenological assumption-that the number of branches a tree can maintain is limited-leads directly to predictions on branching structure and the rate and size distribution of branch loss, these results potentially enable more explicit modeling of woody tissues in ecosystems worldwide, with implications for the buildup of flammable fuel, nutrient cycling, and understanding of plant growth.


Asunto(s)
Modelos Biológicos , Árboles/crecimiento & desarrollo , Acer , Populus , Madera
13.
New Phytol ; 217(4): 1420-1427, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29292829

RESUMEN

Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.


Asunto(s)
Embryophyta/metabolismo , Fósforo/metabolismo , Simbiosis , Adaptación Fisiológica , Raíces de Plantas/fisiología , Suelo/química
14.
New Phytol ; 218(4): 1360-1370, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603233

RESUMEN

Water transport in leaf vasculature is a fundamental process affecting plant growth, ecological interactions and ecosystem productivity, yet the architecture of leaf vascular networks is poorly understood. Although Murray's law and the West-Brown-Enquist (WBE) theories predict convergent scaling of conduit width and number, it is not known how conduit scaling is affected by habitat aridity or temperature. We measured the scaling of leaf size, conduit width and conduit number within the leaves of 36 evergreen Angiosperms spanning a large range in aridity and temperature in eastern Australia. Scaling of conduit width and number in midribs and 2° veins did not differ across species and habitats (P > 0.786), and did not differ from that predicted by Murray's law (P = 0.151). Leaf size was strongly correlated with the hydraulic radius of petiole conduits (r2  = 0.83, P < 0.001) and did not differ among habitats (P > 0.064), nor did the scaling exponent differ significantly from that predicted by hydraulic theory (P = 0.086). The maximum radius of conduits in petioles was positively correlated with the temperature of the coldest quarter (r2  = 0.67; P < 0.001), suggesting that habitat temperature restricts the occurrence of wide-conduit species in cold habitats.


Asunto(s)
Adaptación Fisiológica , Frío , Magnoliopsida/anatomía & histología , Hojas de la Planta/anatomía & histología , Ecosistema , Tamaño de los Órganos , Haz Vascular de Plantas/anatomía & histología
15.
Ann Bot ; 122(1): 59-67, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29668853

RESUMEN

Background and Aims: The structural properties of leaf venation and xylem anatomy strongly influence leaf hydraulics, including the ability of leaves to maintain hydraulic function during drought. Here we examined the strength of the links between different leaf venation traits and leaf hydraulic vulnerability to drought (expressed as P50leaf by rehydration kinetics) in a diverse group of 26 woody angiosperm species, representing a wide range of leaf vulnerabilities, from four low-nutrient sites with contrasting rainfall across eastern Australia. Methods: For each species we measured key aspects of leaf venation design, xylem anatomy and leaf morphology. We also assessed for the first time the scaling relationships between hydraulically weighted vessel wall thickness (th) and lumen breadth (bh) across vein orders and habitats. Key Results: Across species, variation in P50leaf was strongly correlated with the ratio of vessel wall thickness (th) to lumen breadth (bh) [(t/b)h; an index of conduit reinforcement] at each leaf vein order. Concomitantly, the scaling relationship between th and bh was similar across vein orders, with a log-log slope less than 1 indicating greater xylem reinforcement in smaller vessels. In contrast, P50leaf was not related to th and bh individually, to major vein density (Dvmajor) or to leaf size. Principal components analysis revealed two largely orthogonal trait groupings linked to variation in leaf size and drought tolerance. Conclusions: Our results indicate that xylem conduit reinforcement occurs throughout leaf venation, and remains closely linked to leaf drought tolerance irrespective of leaf size.


Asunto(s)
Magnoliopsida/anatomía & histología , Xilema/anatomía & histología , Australia , Clima , Sequías , Ambiente , Magnoliopsida/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Madera , Xilema/fisiología
16.
Nature ; 491(7426): 752-5, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23172141

RESUMEN

Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.


Asunto(s)
Cambio Climático , Sequías , Geografía , Estrés Fisiológico/fisiología , Árboles/fisiología , Biodiversidad , Ciclo del Carbono , Cycadopsida/fisiología , Internacionalidad , Magnoliopsida/fisiología , Presión , Lluvia , Temperatura , Árboles/clasificación , Árboles/crecimiento & desarrollo , Xilema/metabolismo , Xilema/fisiología
17.
New Phytol ; 214(4): 1447-1463, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295374

RESUMEN

The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.


Asunto(s)
Células del Mesófilo/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Dióxido de Carbono/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Difusión , Células del Mesófilo/química , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
18.
New Phytol ; 209(1): 123-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26378984

RESUMEN

The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem.


Asunto(s)
Cycadopsida/fisiología , Magnoliopsida/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas , Agua/fisiología , Madera
19.
Ann Bot ; 117(1): 209-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26530215

RESUMEN

BACKGROUND AND AIMS: The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. 'Specific work to shear' and 'force to tear' are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. METHODS: Specific work to shear (W(SS)) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. KEY RESULTS: A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between W(SS) values for fresh and rehydrated leaves, which is considered to be of practical relevance. CONCLUSIONS: In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on W(SS), or vice versa. In addition, W(SS) values of green leaves can be predicted with good accuracy from W(SS) of rehydrated leaves of the same species.


Asunto(s)
Bases de Datos como Asunto , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Fenómenos Biomecánicos , Modelos Lineales , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda