Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33758078

RESUMEN

Centriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. Key to this is the regulated degradation of PLK4, the master regulator of centriole duplication. Here, we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for the maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4 and centriole overduplication, whereas overexpression of Tiam1 can restrict centriole overduplication. Ultimately, Tiam1 depletion leads to lagging chromosomes at anaphase and aneuploidy, which are potential drivers of malignant progression. The effects of Tiam1 depletion on centrosomal PLK4 levels and centriole overduplication can be rescued by re-expression of both wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein ßTRCP (also known as F-box/WD repeat-containing protein 1A) implying that Tiam1 regulates PLK4 levels through promoting ßTRCP-mediated degradation independently of Rac1 activation.


Asunto(s)
Centriolos , Proteínas Serina-Treonina Quinasas , Ciclo Celular , Proteínas de Ciclo Celular/genética , Centrosoma
2.
New Phytol ; 208(1): 174-87, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25917109

RESUMEN

Experimental data show that Arabidopsis thaliana is able to decode different calcium signatures to produce specific gene expression responses. It is also known that calmodulin-binding transcription activators (CAMTAs) have calmodulin (CaM)-binding domains. Therefore, the gene expression responses regulated by CAMTAs respond to calcium signals. However, little is known about how different calcium signatures are decoded by CAMTAs to produce specific gene expression responses. A dynamic model of Ca(2+) -CaM-CAMTA binding and gene expression responses is developed following thermodynamic and kinetic principles. The model is parameterized using experimental data. Then it is used to analyse how different calcium signatures are decoded by CAMTAs to produce specific gene expression responses. Modelling analysis reveals that: calcium signals in the form of cytosolic calcium concentration elevations are nonlinearly amplified by binding of Ca(2+) , CaM and CAMTAs; amplification of Ca(2+) signals enables calcium signatures to be decoded to give specific CAMTA-regulated gene expression responses; gene expression responses to a calcium signature depend upon its history and accumulate all the information during the lifetime of the calcium signature. Information flow from calcium signatures to CAMTA-regulated gene expression responses has been established by combining experimental data with mathematical modelling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Expresión Génica , Genes de Plantas , Transactivadores/metabolismo , Arabidopsis/metabolismo , Modelos Biológicos , Familia de Multigenes , Transducción de Señal
3.
Plant Cell ; 23(11): 4079-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22086087

RESUMEN

Increases in intracellular calcium concentration ([Ca(2+)](c)) mediate plant responses to stress by regulating the expression of genes encoding proteins that confer tolerance. Several plant stress genes have previously been shown to be calcium-regulated, and in one case, a specific promoter motif Abscisic Acid Responsive-Element (ABRE) has been found to be regulated by calcium. A comprehensive survey of the Arabidopsis thaliana transcriptome for calcium-regulated promoter motifs was performed by measuring the expression of genes in Arabidopsis seedlings responding to three calcium elevations of different characteristics, using full genome microarray analysis. This work revealed a total of 269 genes upregulated by [Ca(2+)](c) in Arabidopsis. Bioinformatic analysis strongly indicated that at least four promoter motifs were [Ca(2+)](c)-regulated in planta. We confirmed this finding by expressing in plants chimeric gene constructs controlled exclusively by these cis-elements and by testing the necessity and sufficiency of calcium for their expression. Our data reveal that the C-Repeat/Drought-Responsive Element, Site II, and CAM box (along with the previously identified ABRE) promoter motifs are calcium-regulated. The identification of these promoter elements targeted by the second messenger intracellular calcium has implications for plant signaling in response to a variety of stimuli, including cold, drought, and biotic stress.


Asunto(s)
Arabidopsis/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dendrímeros , Estimulación Eléctrica , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Péptidos/farmacología , Secuencias Reguladoras de Ácidos Nucleicos , Elementos de Respuesta/genética , Venenos de Avispas/farmacología
5.
Nat Commun ; 6: 7437, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26078008

RESUMEN

Centrosome separation is critical for bipolar spindle formation and the accurate segregation of chromosomes during mammalian cell mitosis. Kinesin-5 (Eg5) is a microtubule motor essential for centrosome separation, and Tiam1 and its substrate Rac antagonize Eg5-dependent centrosome separation in early mitosis promoting efficient chromosome congression. Here we identify S1466 of Tiam1 as a novel Cdk1 site whose phosphorylation is required for the mitotic function of Tiam1. We find that this phosphorylation of Tiam1 is required for the activation of group I p21-activated kinases (Paks) on centrosomes in prophase. Further, we show that both Pak1 and Pak2 counteract centrosome separation in a kinase-dependent manner and demonstrate that they act downstream of Tiam1. We also show that depletion of Pak1/2 allows cells to escape monopolar arrest by Eg5 inhibition, highlighting the potential importance of this signalling pathway for the development of Eg5 inhibitors as cancer therapeutics.


Asunto(s)
Centrosoma/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Huso Acromático/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Perros , Células HEK293 , Humanos , Cinesinas/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Fosforilación , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteínas de Unión al GTP rac
6.
Nat Cell Biol ; 14(11): 1169-80, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23103911

RESUMEN

Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify ß2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly ß2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that ß2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, ß2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that ß2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polarity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a la Distrofina/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Uniones Estrechas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Polaridad Celular/efectos de los fármacos , Perros , Doxiciclina/farmacología , Proteínas Asociadas a la Distrofina/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Inmunohistoquímica , Espectrometría de Masas , Proteínas de la Membrana/genética , Microscopía Fluorescente , Uniones Estrechas/efectos de los fármacos , Proteínas de Unión al GTP rac/genética
7.
Cell Cycle ; 10(10): 1571-81, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21478669

RESUMEN

Rac is a member of the Rho family of small GTPases, which act as molecular switches to control a wide array of cellular functions. In particular, Rac signaling has been implicated in the control of cell-cell adhesions, cell-matrix adhesions, cell migration, cell cycle progression and cellular transformation. As a result of its functional diversity, Rac signaling can influence several aspects of tumorigenesis. Consistent with this, in vivo evidence that Rac signaling contributes to tumorigenesis is continuously emerging. Additionally, our understanding of the mechanisms by which Rac signaling is regulated is rapidly expanding and consequently adds to the complexity of how Rac signaling could be modulated during tumorigenesis. Here we review the numerous biological functions and regulatory mechanisms of Rac signaling and discuss how they could influence the different stages of tumorigenesis.


Asunto(s)
Neoplasias/metabolismo , Proteínas de Unión al GTP rac/fisiología , Animales , Adhesión Celular , Humanos , Interfase , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Transducción de Señal , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda