Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
J Chem Phys ; 151(12): 124301, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575195

RESUMEN

The S1 excited-state lifetime of jet-cooled 1-ethylcytosine (1ECyt) is ∼1 ns, one of the longest lifetimes for cytosine derivatives to date. Here, we analyze its S0 → S1 vibronic spectrum using two-color resonant two-photon ionization and UV/UV holeburning spectroscopy. Compared to cytosine and 1-methylcytosine, the S0 → S1 spectrum of 1ECyt shows a progression in the out-of-plane "butterfly" mode ν1 ', identified by spin-component scaled-second-order coupled-cluster method ab initio calculations. We also report time-resolved S1 state nonradiative dynamics at ∼20 ps resolution by the pump/delayed ionization technique. The S1 lifetime increases with the number of ν1 ' quanta from τ = 930 ps at v1 '=0 to 1030 ps at v1 '=2, decreasing to 14 ps at 710 cm-1 vibrational energy. We measured the rate constants for S1 ⇝ S0 internal conversion and S1 ⇝ T1 intersystem crossing (ISC): At the v' = 0 level, kIC is 8 × 108 s-1 or three times smaller than 1-methylcytosine. The ISC rate constant from v' = 0 to the T1(3ππ*) state is kISC = 2.4 × 108 s-1, 10 times smaller than the ISC rate constants of cytosine, but similar to that of 1-methylcytosine. Based on the calculated S1(1ππ*) state radiative lifetime τrad = 12 ns, the fluorescence quantum yield of 1ECyt is Φfl ∼ 7% and the intersystem crossing yield is ΦISC ∼ 20%. We measured the adiabatic ionization energy of 1-ethylcytosine via excitation of the S1 state as 8.353 ± 0.008 eV, which is 0.38 eV lower than that of amino-keto cytosine. Measurement of the ionization energy of the long-lived T1(ππ*) state formed via ISC reveals that it lies 3.2-3.4 eV above the S0 ground state.

2.
J Chem Phys ; 145(13): 134307, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27782422

RESUMEN

We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm-1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν1' (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ∼ 500 cm-1, indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm-1. The S1⇝S0 internal conversion rate constant increases from kIC = 2 ⋅ 109 s-1 near the S1(v = 0) level to 1 ⋅ 1011 s-1 at Eexc = 516 cm-1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm-1. The ISC rate constant is 10-100 times lower than kIC; it increases from kISC = 2 ⋅ 108 s-1 near S1(v = 0) to kISC = 2 ⋅ 109 s-1 at Eexc = 516 cm-1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm-1. The T2 (3nπ∗) state lies >1500 cm-1 above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm-1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.

3.
J Phys Chem Lett ; 7(5): 752-7, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26863095

RESUMEN

Ultraviolet radiative damage to DNA is inefficient because of the ultrafast S1 ⇝ S0 internal conversion of its nucleobases. Using picosecond pump-ionization delay measurements, we find that the S1((1)ππ*) state vibrationless lifetime of gas-phase keto-amino cytosine (Cyt) is τ = 730 ps or ∼ 700 times longer than that measured by femtosecond pump-probe ionization at higher vibrational excess energy, Eexc. N1-Alkylation increases the S1 lifetime up to τ = 1030 ps for N1-ethyl-Cyt but decreases it to 100 ps for N1-isopropyl-Cyt. Increasing the vibrational energy to Eexc = 300-550 cm(-1) decreases the lifetimes to 20-30 ps. The nonradiative dynamics of S1 cytosine is not solely a property of the amino-pyrimidinone chromophore but is strongly influenced by the N1-substituent. Correlated excited-state calculations predict that the gap between the S2((1)nOπ*) and S1((1)ππ*) states decreases along the series of N1-derivatives, thereby influencing the S1 state lifetime.


Asunto(s)
Citosina/química , Daño del ADN , Estructura Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda