Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 9(12): e1004034, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385928

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.


Asunto(s)
Citocromos b/biosíntesis , Complejo III de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Consanguinidad , Citocromos b/genética , Complejo III de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Homocigoto , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fosforilación Oxidativa , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 288(3): 1685-90, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23223238

RESUMEN

Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.


Asunto(s)
Desoxirribonucleasas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/química , Secuencia de Bases , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Exones , Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/química , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Datos de Secuencia Molecular , Activación Transcripcional
3.
Diabetes ; 65(4): 1085-98, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26822084

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , Mitocondrias/metabolismo , Insuficiencia Renal Crónica/genética , Animales , Respiración de la Célula/genética , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Predisposición Genética a la Enfermedad , Homeostasis/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Fosforilación Oxidativa , Insuficiencia Renal Crónica/metabolismo , Factores de Riesgo
4.
Biosci Rep ; 34(6): e00151, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25312000

RESUMEN

Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.


Asunto(s)
Astrocitos/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Fibroblastos/metabolismo , Neuronas/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Astrocitos/citología , Western Blotting , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Complejo II de Transporte de Electrones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Galactosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Necrosis/genética , Neuronas/citología , Especies Reactivas de Oxígeno/metabolismo , Rotenona/metabolismo , Succinatos/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda