Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Phys Rev Lett ; 124(2): 025003, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004037

RESUMEN

We present a study on the impact of a gas atmosphere on the collision of two counterpropagating plasmas (gold and carbon). Imaging optical Thomson scattering data of the plasma collision with and without helium in between have been obtained at the Omega laser facility. Without gas, we observed large scale mixing of colliding gold and carbon ions. Once ambient helium is added, the two plasmas remain separated. The difference in ionic temperature is consistent with a reduction of the maximum Mach number of the flow from M=7 to M=4. It results in a reduction of a factor ∼10 of the counterstreaming ion-ion mean free path. By adding a low-density ambient gas, it is possible to control the collision of two high-velocity counterstreaming plasma, transitioning from an interpenetrating regime to a regime in agreement with a hydrodynamic description.

2.
Phys Rev Lett ; 123(21): 215001, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809125

RESUMEN

Shocks are abundant both in astrophysical and laboratory systems. While the electric fields generated at shock fronts have recently attracted great attention, the associated self-generated magnetic field is rarely studied, despite its ability to significantly affect the shock profile in the nonideal geometry where density and temperature gradients are not parallel. We report here the observation of a magnetic field at the front of a Mach ∼6 shock propagating in a low-density helium gas system. Proton radiography from different projection angles not only confirms the magnetic field's existence, but also provides a quantitative measurement of the field strength in the range ∼5 to 7 T. X-ray spectrometry allowed inference of the density and temperature at the shock front, constraining the plasma conditions under which the magnetic and electric fields are generated. Simulations with the particle-in-cell code lsp attribute the self-generation of the magnetic field to the Biermann battery effect (∇n_{e}×∇T_{e}).

3.
Ann Oncol ; 29(8): 1763-1770, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878040

RESUMEN

Background: Metastatic triple-negative breast cancer (mTNBC) has a poor prognosis and aggressive clinical course. tnAcity evaluated the efficacy and safety of first-line nab-paclitaxel plus carboplatin (nab-P/C), nab-paclitaxel plus gemcitabine (nab-P/G), and gemcitabine plus carboplatin (G/C) in patients with mTNBC. Patients and methods: Patients with pathologically confirmed mTNBC and no prior chemotherapy for metastatic BC received (1 : 1 : 1) nab-P 125 mg/m2 plus C AUC 2, nab-P 125 mg/m2 plus G 1000 mg/m2, or G 1000 mg/m2 plus C AUC 2, all on days 1, 8 q3w. Phase II primary end point: investigator-assessed progression-free survival (PFS); secondary end points included overall response rate (ORR), overall survival (OS), percentage of patients initiating cycle 6 with doublet therapy, and safety. Results: In total, 191 patients were enrolled (nab-P/C, n = 64; nab-P/G, n = 61; G/C, n = 66). PFS was significantly longer with nab-P/C versus nab-P/G [median, 8.3 versus 5.5 months; hazard ratio (HR), 0.59 [95% CI, 0.38-0.92]; P = 0.02] or G/C (median, 8.3 versus 6.0 months; HR, 0.58 [95% CI, 0.37-0.90]; P = 0.02). OS was numerically longer with nab-P/C versus nab-P/G (median, 16.8 versus 12.1 months; HR, 0.73 [95% CI, 0.47-1.13]; P = 0.16) or G/C (median, 16.8 versus 12.6 months; HR, 0.80 [95% CI, 0.52-1.22]; P = 0.29). ORR was 73%, 39%, and 44%, respectively. In the nab-P/C, nab-P/G, and G/C groups, 64%, 56%, and 50% of patients initiated cycle 6 with a doublet. Grade ≥3 adverse events were mainly hematologic. Conclusions: First-line nab-P/C was active in mTNBC and resulted in a significantly longer PFS and improved risk/benefit profile versus nab-P/G or G/C.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama Triple Negativas/terapia , Adulto , Anciano , Anciano de 80 o más Años , Albúminas/administración & dosificación , Albúminas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carboplatino/administración & dosificación , Carboplatino/efectos adversos , Quimioterapia Adyuvante/efectos adversos , Quimioterapia Adyuvante/métodos , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Mastectomía , Persona de Mediana Edad , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Supervivencia sin Progresión , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Gemcitabina
4.
Phys Rev Lett ; 120(9): 095001, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29547332

RESUMEN

The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M∼11) propagating through a low-density (ρ∼0.01 mg/cc) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

5.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28524679

RESUMEN

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

6.
Phys Rev Lett ; 114(2): 025001, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25635549

RESUMEN

Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D^{3}He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and ^{3}He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

7.
Biometals ; 28(2): 329-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686789

RESUMEN

Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.


Asunto(s)
Antibacterianos/farmacología , Biopelículas , Cobre/farmacología , Agua Potable/microbiología , Legionella pneumophila/fisiología , Antibacterianos/química , Cobre/química , Legionella pneumophila/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Propiedades de Superficie
8.
Phys Rev Lett ; 112(13): 135001, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24745431

RESUMEN

A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50∶50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

9.
Phys Rev Lett ; 112(18): 185001, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856701

RESUMEN

Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.

10.
J Hosp Infect ; 147: 197-205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521417

RESUMEN

BACKGROUND: In recent years, hand drying has been highlighted as a key step in appropriate hand hygiene, as moisture on hands can increase the transfer of micro-organisms from hands to surfaces and vice versa. AIM: To understand bacterial and viral aerosolization following hand drying, and study the transfer of micro-organisms from hands to surfaces after drying using different methods. METHODS: Groups of five volunteers had their hands pre-washed with soap, rinsed and dried, then inoculated with a concentrated mixture of Pseudomonas fluorescens and MS2 bacteriophage. Volunteers entered an empty washroom, one at a time, and rinsed their hands with water or washed their hands with soap prior to drying with a jet dryer or paper towels. Each volunteer applied one hand successively to various surfaces, while their other hand was sampled using the glove juice method. Both residual bacteria and viruses were quantified from the washroom air, surface swabs and hand samples. FINDINGS: P. fluorescens and MS2 bacteriophages were rarely aerosolized while drying hands for any of the drying methods studied. Results also showed limited, and similar, transfer of both micro-organisms studied on to surfaces for all drying methods. CONCLUSION: The use of jet dryers or paper towels produces low levels of aerosolization when drying hands in a washroom. Similarly, all drying methods result in low transfer to surfaces. While the coronavirus disease 2019 pandemic raised concerns regarding public washrooms, this study shows that all methods tested are hygienic solutions for dry washed hands.


Asunto(s)
Aerosoles , Mano , Levivirus , Pseudomonas fluorescens , Humanos , Mano/microbiología , Mano/virología , Pseudomonas fluorescens/virología , Desinfección de las Manos/métodos , Bacterias/aislamiento & purificación , Desecación/métodos , Higiene de las Manos/métodos , COVID-19 , Virus/aislamiento & purificación , Microbiología Ambiental
11.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476281

RESUMEN

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

12.
J Hosp Infect ; 141: 190-197, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37343768

RESUMEN

BACKGROUND: Dry surface biofilms (DSBs) have been found abundantly across hospital surfaces within intensive care units and may explain how nosocomial pathogens can remain virulent and persist on surfaces for extended periods. Testing standards governing the performance of disinfectant products employ planktonic models under routine growth conditions, which are known to be less tolerant than their biofilm counterpart. AIM: To evaluate biofilm models cultured under artificial human sweat (AHS), a source of nutrient expected on touch surfaces, to assess the antimicrobial performance of common cleaning agents, including a quaternary ammonium, hydrogen peroxide and active chlorine. METHODS: Five single-species biofilms, using pathogenic bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, were generated on stainless-steel substrates using a sedimentation protocol under both AHS and nutrient-rich conditions for a direct comparison of phenotypic tolerance. The biofilm models were grown over five days followed by desiccation cycles, before being submerged into the disinfectant solutions for up to 25 min. Epifluorescence (EF) microscopy using LIVE/DEAD™ stain was used to visualize microcolony viability. FINDINGS: The results revealed biofilms cultured under AHS exhibited a greater antimicrobial tolerance and reduced speed of kill for all cleaning agents compared with the routine media; an average reduction of 72.4% vs 96.9%, respectively. EF microscopy revealed traces of viable bacteria across all coupons after disinfection indicating a potential opportunity for regrowth and recontamination. CONCLUSION: The notable difference in biocidal performance between the two growth conditions highlights potential pitfalls within current antimicrobial test standards, and the importance of accurate representation of the microbial challenge.


Asunto(s)
Desinfectantes , Humanos , Desinfectantes/farmacología , Sudor , Desinfección/métodos , Biopelículas , Hospitales
13.
J Hosp Infect ; 141: 175-183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348564

RESUMEN

BACKGROUND: Dry surface biofilms (DSBs) have been recognized across environmental and equipment surfaces in hospitals and could explain how microbial contamination can survive for an extended period and may play a key role in the transmission of hospital-acquired infections. Despite little being known on how they form and proliferate in clinical settings, DSB models for disinfectant efficacy testing exist. AIM: In this study we develop a novel biofilm model to represent formation within hospitals, by emulating patient to surface interactions. METHODS: The model generates a DSB through the transmission of artificial human sweat (AHS) and clinically relevant pathogens using a synthetic thumb capable of emulating human contact. The DNA, glycoconjugates and protein composition of the model biofilm, along with structural features of the micro-colonies was determined using fluorescent stains visualized by epifluorescence microscopy and compared with published clinical data. RESULTS: Micrographs revealed the heterogeneity of the biofilm across the surface; and reveal protein as the principal component within the matrix, followed by glycoconjugates and DNA. The model repeatably transferred trace amounts of micro-organisms and AHS, every 5 min for up to 120 h on to stainless-steel coupons to generate a biofilm model averaging 1.16 × 103 cfu/cm2 falling within the reported range for clinical DSB (4.20 × 102 to 1.60 × 107 bacteria/cm2). CONCLUSION: Our in vitro DSB model exhibits many phenotypical characteristics and traits to those reported in situ. The model highlights key features often overlooked and the potential for downstream applications such as antibiofilm claims using more realistic microbial challenges.


Asunto(s)
Acinetobacter baumannii , Humanos , Biopelículas , Atención a la Salud , ADN , Glicoconjugados
14.
J Hosp Infect ; 131: 203-212, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343745

RESUMEN

Hospital surfaces contaminated with microbial soiling, such as dry surface biofilms (DSBs), can act as a reservoir for pathogenic micro-organisms, and inhibit their detection and removal during routine cleaning. Studies have recognized that such increases in bioburden can hinder the impact of disinfectants and mask the detection of potential pathogens. Cleanliness within healthcare settings is often determined through routine culture-based analysis, whereby surfaces that exhibit >2.5 colony-forming units (CFU) per cm2 pose a risk to patient health; therefore, any underestimation could have detrimental effects. This study quantified microbial growth on high-touch surfaces in four hospitals in England over 19 months. This was achieved using environmental swabs to sample a variety of surfaces within close proximity of the patient, and plating these on to non-specific low nutrient detection agar. The presence of DSBs on surfaces physically removed from the environment was confirmed using real-time imaging through episcopic differential interference contrast microscopy combined with epifluorescence. Approximately two-thirds of surfaces tested exceeded the limit for cleanliness (median 2230 CFU/cm2), whilst 83% of surfaces imaged with BacLight LIVE/DEAD staining confirmed traces of biofilm. Differences in infection control methods, such as choice of surface disinfectants and cleaning personnel, were not reflected in the microbial variation observed and resulting risk to patients. This highlights a potential limitation in the effectiveness of the current standards for all hospital cleaning, and further development using representative clinical data is required to overcome this limitation.


Asunto(s)
Infección Hospitalaria , Desinfectantes , Microbiota , Humanos , Medicina Estatal , Infección Hospitalaria/prevención & control , Hospitales , Desinfectantes/farmacología , Desinfección/métodos
15.
R Soc Open Sci ; 10(1): 221120, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636312

RESUMEN

Systems of rod-shaped viruses have long been important to the science of living liquid crystals, as their monodispersity and uniform charge make them convenient model systems. Recently, it was shown that, upon the addition of polymers, suspensions of rod-shaped viruses form liquid crystals that are linked with increased tolerance of bacteria against antibiotics. We use homogenization to obtain effective equations describing antibiotic diffusion through these liquid crystals. The analytical results of homogenization are compared with numerical results from an exact microscopic model, showing good agreement and thus allowing us to identify the key parameters behind the process. Our modelling shows that the adsorption plays a key role in increasing antibiotic diffusion time and therefore the presence of nematic rod-shaped viruses may increase antibiotic tolerance through physical mechanisms alone. These results demonstrate the applicability of homogenization as an analytical tool to systems of liquid crystalline viruses, with relatively straightforward extension to more complex problems such as liquid crystalline biofilms, other biological liquid crystals and biological systems with different types of local structural order.

16.
Rev Sci Instrum ; 94(2): 023507, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859040

RESUMEN

The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

17.
Phys Rev Lett ; 108(11): 115004, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540481

RESUMEN

The effect of increasing prepulse energy levels on the energy spectrum and coupling into forward-going electrons is evaluated in a cone-guided fast-ignition relevant geometry using cone-wire targets irradiated with a high intensity (10(20) W/cm(2)) laser pulse. Hot electron temperature and flux are inferred from Kα images and yields using hybrid particle-in-cell simulations. A two-temperature distribution of hot electrons was required to fit the full profile, with the ratio of energy in a higher energy (MeV) component increasing with a larger prepulse. As prepulse energies were increased from 8 mJ to 1 J, overall coupling from laser to all hot electrons entering the wire was found to fall from 8.4% to 2.5% while coupling into only the 1-3 MeV electrons dropped from 0.57% to 0.03%.

18.
Phys Rev Lett ; 109(14): 145006, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23083255

RESUMEN

A novel time-resolved diagnostic is used to record the critical surface motion during picosecond-scale relativistic laser interaction with a solid target. Single-shot measurements of the specular light show a redshift decreasing with time during the interaction, corresponding to a slowing-down of the hole boring process into overdense plasma. On-shot full characterization of the laser pulse enables simulations of the experiment without any free parameters. Two-dimensional particle-in-cell simulations yield redshifts that agree with the data, and support a simple explanation of the slowing-down of the critical surface based on momentum conservation between ions and reflected laser light.

19.
Phys Rev Lett ; 108(2): 025001, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324691

RESUMEN

This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

20.
Rev Sci Instrum ; 93(9): 093514, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182503

RESUMEN

A novel dual-energy fast neutron imaging technique is presented using short-pulse laser-driven neutron sources to leverage their inherent adaptive spectral control to enable 3D volume segmentation and reconstruction. Laser-accelerated ion beams incident onto secondary targets create directional, broadband, MeV-class neutrons. Synthetic radiographs are produced of multi-material objects using ion and neutron spectra derived from analytic and numerical models. It is demonstrated that neutron images generated from small changes to the neutron spectra, controlled by altering the initial laser conditions, are sufficient to isolate materials with differing attenuation coefficients. This is first demonstrated using a simplistic combinatorial isolation method and then by employing more advanced reconstruction algorithms to reduce artifacts and generate a segmentation volume of the constituent materials.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda