Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Annu Rev Biochem ; 80: 943-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675921

RESUMEN

GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,ß topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.


Asunto(s)
Secuencias de Aminoácidos , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al GTP/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Cell ; 141(5): 812-21, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510928

RESUMEN

Arfs are small G proteins that have a key role in vesicle trafficking and cytoskeletal remodeling. ArfGAP proteins stimulate Arf intrinsic GTP hydrolysis by a mechanism that is still unresolved. Using a fusion construct we solved the structure of the ArfGAP ASAP3 in complex with Arf6 in the transition state. This structure clarifies the ArfGAP catalytic mechanism and shows a glutamine((Arf6)) and an arginine finger((ASAP3)) as the important catalytic residues. Unexpectedly the structure shows a calcium ion, liganded by both proteins in the complex interface, stabilizing the interaction and orienting the catalytic machinery. Calcium stimulates the GAP activity of ASAPs, but not other members of the ArfGAP family. This type of regulation is unique for GAPs and any other calcium-regulated processes and hints at a crosstalk between Ca(2+) and Arf signaling.


Asunto(s)
Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Calcio/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Factor 6 de Ribosilación del ADP , Secuencia de Aminoácidos , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia
3.
Nat Rev Mol Cell Biol ; 10(6): 423-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19424291

RESUMEN

Guanine nucleotide-binding (G) proteins, which cycle between a GDP- and a GTP-bound conformation, are conventionally regulated by GTPase-activating proteins (GAPs) and guanine nucleotide-exchange factors (GEFs), and function by interacting with effector proteins in the GTP-bound 'on' state. Here we present another class of G proteins that are regulated by homodimerization, which we would categorize as G proteins activated by nucleotide-dependent dimerization (GADs). This class includes proteins such as signal recognition particle (SRP), dynamin, septins and the newly discovered Roco protein Leu-rich repeat kinase 2 (LRRK2). We propose that the juxtaposition of the G domains of two monomers across the GTP-binding sites activates the biological function of these proteins and the GTPase reaction.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Cuaternaria de Proteína , Compuestos de Aluminio/metabolismo , Animales , Sitios de Unión , Dimerización , Fluoruros/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Cell Sci ; 131(4)2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361551

RESUMEN

Retinitis pigmentosa 2 (RP2) is the causative gene for a form of X-linked retinal degeneration. RP2 was previously shown to have GTPase-activating protein (GAP) activity towards the small GTPase ARL3 via its N-terminus, but the function of the C-terminus remains elusive. Here, we report a novel interaction between RP2 and osteoclast-stimulating factor 1 (OSTF1), an intracellular protein that indirectly enhances osteoclast formation and activity and is a negative regulator of cell motility. Moreover, this interaction is abolished by a human pathogenic mutation in RP2. We utilized a structure-based approach to pinpoint the binding interface to a strictly conserved cluster of residues on the surface of RP2 that spans both the C- and N-terminal domains of the protein, and which is structurally distinct from the ARL3-binding site. In addition, we show that RP2 is a positive regulator of cell motility in vitro, recruiting OSTF1 to the cell membrane and preventing its interaction with the migration regulator Myo1E.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Actinas/genética , Proteínas del Ojo/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas/genética , Retinitis Pigmentosa/genética , Factores de Ribosilacion-ADP/química , Actinas/química , Sitios de Unión/genética , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular/genética , Cilios/genética , Cilios/metabolismo , Proteínas del Ojo/química , Proteínas de Unión al GTP , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Miosina Tipo I/química , Miosina Tipo I/genética , Unión Proteica/genética , Conformación Proteica , Dominios Proteicos/genética , Estructura Terciaria de Proteína , Proteínas/química , Retina/metabolismo , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
5.
Nature ; 497(7451): 638-42, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23698361

RESUMEN

The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS-PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Bencimidazoles/metabolismo , Bencimidazoles/uso terapéutico , Sitios de Unión , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Perros , Humanos , Enlace de Hidrógeno , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Conformación Molecular , Trasplante de Neoplasias , Proteína Oncogénica p21(ras)/genética , Unión Proteica/efectos de los fármacos
6.
Biol Chem ; 399(3): 277-292, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29140789

RESUMEN

The inositol polyphosphate 5'-phosphatase E (INPP5E) localizes to cilia. We showed that the carrier protein phosphodiesterase 6 delta subunit (PDE6δ) mediates the sorting of farnesylated INPP5E into cilia due to high affinity binding and release by the ADP-ribosylation factor (Arf)-like protein Arl3·GTP. However, the dynamics of INPP5E transport into and inside the ciliary compartment are not fully understood. Here, we investigate the movement of INPP5E using live cell fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) analysis. We show that PDE6δ and the dynein transport system are essential for ciliary sorting and entry of INPP5E. However, its innerciliary transport is regulated solely by the intraflagellar transport (IFT) system, independent from PDE6δ activity and INPP5E farnesylation. By contrast, movement of Arl3 into and within cilia occurs freely by diffusion and IFT-independently. The farnesylation defective INPP5E CaaX box mutant loses the exclusive ciliary localization. The accumulation of this mutant at centrioles after photobleaching suggests an affinity trap mechanism for ciliary entry, that in case of the wild type is overcome by the interaction with PDE6δ. Collectively, we postulate a three-step mechanism regulating ciliary localization of INPP5E, consisting of farnesylation- and PDE6δ-mediated targeting, INPP5E-PDE6δ complex diffusion into the cilium with transfer to the IFT system, and retention inside cilia.


Asunto(s)
Cilios/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Dineínas/metabolismo , Ratones , Microscopía Fluorescente , Monoéster Fosfórico Hidrolasas/genética
7.
Biol Chem ; 399(12): 1447-1456, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30067506

RESUMEN

Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación
8.
J Biol Chem ; 291(39): 20766-78, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27481943

RESUMEN

Primary cilia are highly specialized small antenna-like cellular protrusions that extend from the cell surface of many eukaryotic cell types. The protein content inside cilia and cytoplasm is very different, but details of the sorting process are not understood for most ciliary proteins. Recently, we have shown that prenylated proteins are sorted according to their affinity to the carrier protein PDE6δ and the ability of Arl3 but not Arl2 to release high affinity cargo inside the cilia (Fansa, E. K., Kösling, S. K., Zent, E., Wittinghofer, A., and Ismail, S. (2016) Nat. Commun. 7, 11366). Here we address the question whether a similar principle governs the transport of myristoylated cargo by the carrier proteins Unc119a and Unc119b. We thus analyzed the binding strength of N-terminal myristoylated cargo peptides (GNAT1, NPHP3, Cystin1, RP2, and Src) to Unc119a and Unc119b proteins. The affinity between myristoylated cargo and carrier protein, Unc119, varies between subnanomolar and micromolar. Peptides derived from ciliary localizing proteins (GNAT1, NPHP3, and Cystin1) bind with high affinity to Unc119 proteins, whereas a peptide derived from a non-ciliary localizing protein (Src) has low affinity. The peptide with intermediate affinity (RP2) is localized at the ciliary transition zone as a gate keeper. We show that the low affinity peptides are released by both Arl2·GppNHp and Arl3·GppNHp, whereas the high affinity peptides are exclusively released by only Arl3·GppNHp. Determination of the x-ray structure of myristoylated NPHP3 peptide in complex with Unc119a reveals the molecular details of high affinity binding and suggests the importance of the residues at the +2 and +3 positions relative to the myristoylated glycine for high and low affinities. The mutational analysis of swapping the residues at the +2 and +3 positions between high and low affinity peptides results in reversing their affinities for Unc119a and leads to a partial mislocalization of a low affinity mutant of NPHP3.


Asunto(s)
Factores de Ribosilacion-ADP/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Unión al GTP/química , Cinesinas/química , Péptidos/química , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Estructura Cuaternaria de Proteína
9.
Biol Chem ; 399(1): 63-72, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28885980

RESUMEN

Rasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BP and Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BP and Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Modelos Moleculares , Dominios Proteicos
10.
Biol Chem ; 398(5-6): 535-545, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27935847

RESUMEN

The prenyl binding protein PDEδ enhances the diffusion of farnesylated Ras proteins in the cytosol, ultimately affecting their correct localization and signaling. This has turned PDEδ into a promising target to prevent oncogenic KRas signaling. In this review we summarize and describe the structure-guided-development of the three different PDEδ inhibitor chemotypes that have been documented so far. We also compare both their potency for binding to the PDEδ pocket and their in vivo efficiency in suppressing oncogenic KRas signaling, as a result of the inhibition of the PDEδ/KRas interaction.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Inhibidores Enzimáticos/química , Piridazinas/química , Piridazinas/farmacología
11.
Chemistry ; 23(25): 6083-6093, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27809361

RESUMEN

The K-Ras GTPase is a major target in anticancer drug discovery. However, direct interference with signaling by K-Ras has not led to clinically useful drugs yet. Correct localization and signaling by farnesylated K-Ras is regulated by the prenyl binding protein PDEδ. Interfering with binding of PDEδ to K-Ras by means of small molecules provides a novel opportunity to suppress oncogenic signaling. Here we describe the identification and structure-guided development of novel K-Ras-PDEδ inhibitor chemotypes based on pyrrolopyridazinones and pyrazolopyridazinones that bind to the farnesyl binding pocket of PDEδ with low nanomolar affinity. We delineate the structure-property relationship and in vivo pharmacokinetic (PK) and toxicokinetic (Tox) studies for pyrazolopyridazinone-based K-Ras-PDEδ inhibitors. These findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic Ras.

12.
Angew Chem Int Ed Engl ; 56(22): 6181-6186, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28471079

RESUMEN

N-Terminal myristoylation facilitates membrane binding and activity of proteins, in particular of Src family kinases, but the underlying mechanisms are only beginning to be understood. The chaperones UNC119A/B regulate the cellular distribution and signaling of N-myristoylated proteins. Selective small-molecule modulators of the UNC119-cargo interaction would be invaluable tools, but have not been reported yet. We herein report the development of the first UNC119-cargo interaction inhibitor, squarunkin A. Squarunkin A selectively inhibits the binding of a myristoylated peptide representing the N-terminus of Src kinase to UNC119A with an IC50 value of 10 nm. It binds to UNC119 proteins in cell lysate and interferes with the activation of Src kinase. Our results demonstrate that small-molecule inhibition of the UNC119-cargo interaction might provide new opportunities for modulating the activity of Src kinases that are independent of direct inhibition of the enzymatic kinase activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Concentración 50 Inhibidora , Chaperonas Moleculares/metabolismo , Unión Proteica , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química
13.
Angew Chem Int Ed Engl ; 56(9): 2423-2428, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28106325

RESUMEN

Small-molecule inhibition of the interaction between the KRas oncoprotein and the chaperone PDE6δ impairs KRas spatial organization and signaling in cells. However, despite potent binding in vitro (KD <10 nm), interference with Ras signaling and growth inhibition require 5-20 µm compound concentrations. We demonstrate that these findings can be explained by fast release of high-affinity inhibitors from PDE6δ by the release factor Arl2. This limitation is overcome by novel highly selective inhibitors that bind to PDE6δ with up to 7 hydrogen bonds, resulting in picomolar affinity. Their release by Arl2 is greatly decreased, and representative compounds selectively inhibit growth of KRas mutated and -dependent cells with the highest activity recorded yet. Our findings indicate that very potent inhibitors of the KRas-PDE6δ interaction may impair the growth of tumors driven by oncogenic KRas.

14.
EMBO J ; 31(20): 4085-94, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22960633

RESUMEN

Access to the ciliary membrane for trans-membrane or membrane-associated proteins is a regulated process. Previously, we have shown that the closely homologous small G proteins Arl2 and Arl3 allosterically regulate prenylated cargo release from PDEδ. UNC119/HRG4 is responsible for ciliary delivery of myristoylated cargo. Here, we show that although Arl3 and Arl2 bind UNC119 with similar affinities, only Arl3 allosterically displaces cargo by accelerating its release by three orders of magnitude. Crystal structures of Arl3 and Arl2 in complex with UNC119a reveal the molecular basis of specificity. Contrary to previous structures of GTP-bound Arf subfamily proteins, the N-terminal amphipathic helix of Arl3·GppNHp is not displaced by the interswitch toggle but remains bound on the surface of the protein. Opposite to the mechanism of cargo release on PDEδ, this induces a widening of the myristoyl binding pocket. This leads us to propose that ciliary targeting of myristoylated proteins is not only dependent on nucleotide status but also on the cellular localization of Arl3.


Asunto(s)
Factores de Ribosilacion-ADP/química , Proteínas Adaptadoras Transductoras de Señales/química , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Cristalografía por Rayos X , Ácidos Grasos Monoinsaturados/metabolismo , Polarización de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Transducina
15.
Biochem J ; 465(1): 139-47, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25317655

RESUMEN

Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Modelos Moleculares , Nucleótidos/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína
16.
Proc Natl Acad Sci U S A ; 110(1): 111-6, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23251034

RESUMEN

Rasal, belonging to the GAP1 subfamily of Ras GTPase-activating proteins (RasGAPs) with dual RasGAP/RapGAP specificity, is epigenetically silenced in several tumor types. Surprisingly, the isolated protein has GAP activity on Rap but not on Ras. Its membrane recruitment is regulated by interaction with calcium and lipids, which simultaneously induces its RasGAP activity through a yet unknown mechanism. Here we show that the interaction of Rasal with membranes induces Rasal RasGAP activity by spatial and conformational regulation, although it does not have any effect on its RapGAP activity. Not only is colocalization of Rasal and Ras in the membrane essential for RasGAP activation, but direct and Ca-dependent interaction between the tandem C2 domains of Rasal and lipids of the membrane is also required. Whereas the C2A domain binds specifically phosphatidylserine, the C2B domain interacts with several phosphoinositol lipids. Finally we show, that similar to the C2 domains of synaptotagmins, the Rasal tandem C2 domains are able to sense and induce membrane curvature by the insertion of hydrophobic loops into the membrane.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Conformación Proteica , Proteína Activadora de GTPasa p120/metabolismo , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/fisiología , Escherichia coli , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Estructura Terciaria de Proteína , Proteína Activadora de GTPasa p120/genética
17.
Biophys J ; 109(8): 1619-29, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488653

RESUMEN

The small GTP-binding proteins Arl2 and Arl3, which are close homologs, share a number of interacting partners and act as displacement factors for prenylated and myristoylated cargo. Nevertheless, both proteins have distinct biological functions. Whereas Arl3 is considered a ciliary protein, Arl2 has been reported to be involved in tubulin folding, mitochondrial function, and Ras signaling. How these different roles are attained by the two homolog proteins is not fully understood. Recently, we showed that the N-terminal amphipathic helix of Arl3, but not that of Arl2, regulates the release of myristoylated ciliary proteins from the GDI-like solubilizing factor UNC119a/b. In the biophysical study presented here, both proteins are shown to exhibit a preferential localization and clustering in liquid-disordered domains of phase-separated membranes. However, the membrane interaction behavior differs significantly between both proteins with regard to their nucleotide loading. Whereas Arl3 and other Arf proteins with an N-terminal amphipathic helix require GTP loading for the interaction with membranes, Arl2 binds to membranes in a nucleotide-independent manner. In contrast to Arl2, the N-terminal helix of Arl3 increases the binding affinity to UNC119a. Furthermore, UNC119a impedes membrane binding of Arl3, but not of Arl2. Taken together, these results suggest an interplay among the nucleotide status of Arl3, the location of the N-terminal helix, membrane fluidity and binding, and the release of lipid modified cargos from carriers such as UNC119a. Since a specific Arl3-GEF is postulated to reside inside cilia, the N-terminal helix of Arl3•GTP would be available for allosteric regulation of UNC119a cargo release only inside cilia.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas Adaptadoras Transductoras de Señales/química , Fluorescencia , Guanosina Difosfato/química , Cinética , Microdominios de Membrana , Membranas Artificiales , Microscopía de Fuerza Atómica , Imagen Óptica , Conformación Proteica
18.
EMBO J ; 30(20): 4185-97, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21847100

RESUMEN

The bacterium Myxococcus xanthus uses a G protein cycle to dynamically regulate the leading/lagging pole polarity axis. The G protein MglA is regulated by its GTPase-activating protein (GAP) MglB, thus resembling Ras family proteins. Here, we show structurally and biochemically that MglA undergoes a dramatic, GDP-GTP-dependent conformational change involving a screw-type forward movement of the central ß2-strand, never observed in any other G protein. This movement and complex formation with MglB repositions the conserved residues Arg53 and Gln82 into the active site. Residues required for catalysis are thus not provided by the GAP MglB, but by MglA itself. MglB is a Roadblock/LC7 protein and functions as a dimer to stimulate GTP hydrolysis in a 2:1 complex with MglA. In vivo analyses demonstrate that hydrolysis mutants abrogate Myxococcus' ability to regulate its polarity axis changing the reversal behaviour from stochastic to oscillatory and that both MglA GTPase activity and MglB GAP catalysis are essential for maintaining a proper polarity axis.


Asunto(s)
Proteínas Bacterianas/química , Guanosina Trifosfato/metabolismo , Myxococcus xanthus/fisiología , Proteínas ras/química , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Polaridad Celular , Glutamina/química , Glutamina/deficiencia , Hidrólisis , Datos de Secuencia Molecular , Myxococcus xanthus/metabolismo , Conformación Proteica , Proteínas ras/genética
19.
EMBO Rep ; 14(5): 465-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23559067

RESUMEN

Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR-interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo-loaded PDEδ and exposes the Arl2/Arl3-binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo-loaded PDEδ and Arl3 to release lipidated cargo into cilia.


Asunto(s)
Factores de Ribosilacion-ADP/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Proteínas del Ojo/química , Proteínas de Unión al GTP/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cilios/fisiología , Secuencia Conservada , Cristalografía por Rayos X , Proteínas del Ojo/genética , Humanos , Metabolismo de los Lípidos , Ratones , Modelos Moleculares , Mutación Missense , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Prenilación de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas
20.
Biochem J ; 457(2): 301-11, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24168557

RESUMEN

Ciliopathies are human diseases arising from defects in primary or motile cilia. The small G-protein Arl13B (ADP-ribosylation factor-like 13B) localizes to microtubule doublets of the ciliary axoneme and is mutated in Joubert syndrome. Its GDP/GTP mechanistic cycle and the effect of its mutations in patients with Joubert syndrome remain elusive. In the present study we applied high resolution structural and biochemical approaches to study Arl13B. The crystal structure of Chlamydomonas rheinhardtii Arl13B, comprising the G-domain and part of its unique C-terminus, revealed an incomplete active site, and together with biochemical data the present study accounts for the absence of intrinsic GTP hydrolysis by this protein. The structure shows that the residues representing patient mutations R79Q and R200C are involved in stabilizing important intramolecular interactions. Our studies suggest that Arg79 is crucial for the GDP/GTP conformational change by stabilizing the large two-residue register shift typical for Arf (ADP-ribosylation factor) and Arl subfamily proteins. A corresponding mutation in Arl3 induces considerable defects in effector and GAP (GTPase-activating protein) binding, suggesting a loss of Arl13B function in patients with Joubert syndrome.


Asunto(s)
Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Enfermedades Cerebelosas/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Mutación/genética , Retina/anomalías , Anomalías Múltiples , Secuencia de Aminoácidos , Cerebelo/anomalías , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda