RESUMEN
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Asunto(s)
Senescencia Celular , Humanos , Animales , Biomarcadores/metabolismo , Guías como Asunto , Neoplasias/patologíaRESUMEN
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Asunto(s)
ARN de Transferencia , ARN , Humanos , ARN de Transferencia/metabolismo , Bacterias/metabolismo , Células Epiteliales/metabolismoRESUMEN
Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.
Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Humanos , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Células HeLa , Vesículas Extracelulares/metabolismo , EnvejecimientoRESUMEN
It is assumed that RNAs enriched in extracellular samples were selected for release by their parental cells. However, recent descriptions of extracellular RNA (exRNA) biogenesis and their differential stabilities question this assumption, as they could produce identical outcomes. Here, we share our opinion about the importance of considering both selective and nonselective mechanisms for RNA release into the extracellular environment. In doing so, we provide new perspectives on RNA-mediated intercellular communication, including an analogy to communication through social media. We also argue that technical limitations have restricted the study of some of the most abundant exRNAs, both inside and outside extracellular vesicles (EVs). These RNAs may be better positioned to induce a response in recipient cells compared with low abundance miRNAs.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Comunicación Celular , HumanosRESUMEN
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV-1-infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re-routed to non-viral EVs in a Nef-dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.
Asunto(s)
Vesículas Extracelulares/metabolismo , Infecciones por VIH/metabolismo , Proteoma/metabolismo , Células Cultivadas , Células HEK293 , VIH-1 , Humanos , Células Jurkat , Leucosialina/metabolismo , Glicoproteínas de Membrana/metabolismo , ARN Helicasas/metabolismoRESUMEN
Extracellular vesicles (EVs) are released by all cells, can cross the blood-brain barrier, and have been shown to play an important role in cellular communication, substance shuttling, and immune modulation. In recent years EVs have shifted into focus in multiple sclerosis (MS) research as potential plasma biomarkers and therapeutic vehicles. Yet little is known about the disease-associated changes in EVs in the central nervous system (CNS). To address this gap, we characterized the physical and proteomic changes of mouse spinal cord-derived EVs before and at 16 and 25 days after the induction of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model of MS. Using various bioinformatic tools, we found changes in inflammatory, glial, and synaptic proteins and pathways, as well as a shift in the predicted contribution of immune and glial cell types over time. These results show that EVs provide snapshots of crucial disease processes such as CNS-compartmentalized inflammation, re/de-myelination, and synaptic pathology, and might also mediate these processes. Additionally, inflammatory plasma EV biomarkers previously identified in people with MS were also altered in EAE spinal cord EVs, suggesting commonalities of EV-related pathological processes during EAE and MS and overlap of EV proteomic changes between CNS and circulating EVs.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Ratones Endogámicos C57BL , Médula Espinal , Vesículas Extracelulares/metabolismo , Animales , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , ProteómicaRESUMEN
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.
Asunto(s)
Vesículas Extracelulares , Microscopía/métodos , Animales , Colorantes/química , Epítopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patología , Vesículas Extracelulares/fisiología , Colorantes Fluorescentes/química , HumanosRESUMEN
INTRODUCTION: Brain tissue-derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from a simian immunodeficiency virus (SIV) model of HIV disease, we identified RNA networks in SIV infection and neuroinflammation. METHODS: Postmortem occipital cortex samples were obtained from uninfected controls and SIV-infected subjects (acute and chronic phases with or without CNS pathology (SIV encephalitis). bdEVs were separated and characterized per international consensus guidelines. RNAs from bdEVs and BH were sequenced and qPCR-amplified to detect levels of small RNAs (sRNAs, including microRNAs (miRNAs)) and longer RNAs including messenger RNAs (mRNAs) and circular RNAs (circRNAs). RESULTS: Dysregulated RNAs in BH and bdEVs were identified in acute and chronic infection with pathology groups, including mRNAs, miRNAs, and circRNAs. Most dysregulated mRNAs in bdEVs reflected dysregulation in source BH. These mRNAs are disproportionately involved in inflammation and immune responses. Based on target prediction, several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in sRNA levels in bdEVs during SIV infection. CONCLUSIONS: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.
RESUMEN
Hypoxia, or low oxygen tension, is frequently found in highly proliferative solid tumors such as anaplastic thyroid carcinoma (ATC) and is believed to promote resistance to chemotherapy and radiation. Identifying hypoxic cells for targeted therapy may thus be an effective approach to treating aggressive cancers. Here, we explore the potential of the well-known hypoxia-responsive microRNA (miRNA) miR-210-3p as a cellular and extracellular biological marker of hypoxia. We compare miRNA expression across several ATC and papillary thyroid cancer (PTC) cell lines. In the ATC cell line SW1736, miR-210-3p expression levels indicate hypoxia during exposure to low oxygen conditions (2% O2). Furthermore, when released by SW1736 cells into the extracellular space, miR-210-3p is associated with RNA carriers such as extracellular vesicles (EVs) and Argonaute-2 (AGO2), making it a potential extracellular marker for hypoxia.
Asunto(s)
Proteínas Argonautas , Vesículas Extracelulares , MicroARNs , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , Hipoxia/genética , MicroARNs/genética , Oxígeno/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/metabolismoRESUMEN
People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.
Asunto(s)
Trastorno Depresivo Mayor , Vesículas Extracelulares , Infecciones por VIH , MicroARNs , Animales , Ceramidas , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratones , MicroARNs/genética , MicroARNs/farmacología , Esfingomielina Fosfodiesterasa/genéticaRESUMEN
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma membrane ectosomes or microvesicles and endosomal origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. We summarize contemporary understanding of EV biogenesis, composition, and function, with an emphasis on the role of EVs in the cardiovascular system. In addition, we outline the functional relevance of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.
Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Transporte Biológico , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/cirugía , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Comunicación Celular , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Vesículas Extracelulares/trasplante , Humanos , Transducción de Señal , Trasplante de Células MadreRESUMEN
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.
Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Humanos , Estudios ProspectivosRESUMEN
Precision medicine, also known as personalized medicine, is concerned with finding the right treatment for the right patient at the right time. It is a way of thinking focused on parsing heterogeneity ultimately down to the level of the individual. Its main mission is to identify characteristics of heterogeneous clinical conditions so as to target tailored therapies to individuals. Precision Medicine however is not an agnostic collection of all manner of clinical, genetic and other biologic data in select cohorts. This is an important point. Simply collecting as much information as possible on individuals without applying this way of thinking should not be considered Precision Medicine.
Asunto(s)
Enfermedad de Alzheimer , Medicina de Precisión , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , HumanosRESUMEN
Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communications and exert various biological activities via delivering unique cargos of functional molecules such as RNAs and proteins to recipient cells. Previous studies showed that EVs produced and secreted by human mesenchymal stem cells (MSCs) can substitute intact MSCs for tissue repair and regeneration. In this study, we examined properties and functions of EVs from human induced pluripotent stem cells (iPSCs) that can be cultured infinitely under a chemically defined medium free of any exogenous EVs. We collected and purified EVs secreted by human iPSCs and MSCs. Purified EVs produced by both stem cell types have similar sizes (â¼150 nm in diameter), but human iPSCs produced 16-fold more EVs than MSCs. When highly purified iPSC-EVs were applied in culture to senescent MSCs that have elevated reactive oxygen species (ROS), human iPSC-EVs reduced cellular ROS levels and alleviated aging phenotypes of senescent MSCs. Our discovery reveals that EVs from human stem cells can alleviate cellular aging in culture, at least in part by delivering intracellular peroxiredoxin antioxidant enzymes. Stem Cells 2019;37:779-790.
Asunto(s)
Senescencia Celular/genética , Vesículas Extracelulares/química , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Peroxirredoxinas/genética , Antioxidantes/metabolismo , Transporte Biológico , Comunicación Celular , Vesículas Extracelulares/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Células Madre Mesenquimatosas/citología , Peroxirredoxinas/metabolismo , Fenotipo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Transducción Genética , TransgenesRESUMEN
STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.
Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas/citología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Exosomas/trasplante , Vesículas Extracelulares/trasplante , Humanos , Sociedades Científicas , Tratamiento Farmacológico de COVID-19RESUMEN
Extracellular vesicles (EVs) are cell-derived nanoparticles that act as natural carriers of nucleic acids between cells. They offer advantages as delivery vehicles for therapeutic nucleic acids such as small RNAs. Loading of desired nucleic acids into EVs can be achieved by electroporation or transfection once purified. An attractive alternative is to transfect cells with the desired small RNAs and harness the cellular machinery for RNA sorting into the EVs. This possibility has been less explored because cells are believed to secrete only specific RNAs. However, we hypothesized that, even in the presence of selective secretion, concentration-driven RNA sorting to EVs would still be feasible. To show this, we transfected cells with glycine 5' tRNA halves, which we have previously shown to better resist RNases. We then measured their levels in EVs and in recipient cells and found that, in contrast to unstable RNAs of random sequence, these tRNA halves were present in vesicles and in recipient cells in amounts proportional to the concentration of RNA used for transfection. Similar efficiencies were obtained with other stable oligonucleotides of random sequence. Our results demonstrate that RNA stability is a key factor needed to maintain high intracellular concentrations, a prerequisite for efficient non-selective RNA sorting to EVs and delivery to cells. Given that glycine 5' tRNA halves belong to the group of stress-induced tRNA fragments frequently detected in extracellular space and biofluids, we propose that upregulation of extracellular tRNA fragments is consequential to cellular stress and might be involved in intercellular signalling.
Asunto(s)
Vesículas Extracelulares/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transporte Biológico , Comunicación Celular , Línea Celular Tumoral , Exosomas/metabolismo , Expresión Génica , Humanos , Transporte de ARN , ARN de Transferencia/química , ARN no Traducido/genética , Transfección , Proteína 1 de Unión a la Caja Y/metabolismoAsunto(s)
Estenosis de la Válvula Aórtica , MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Función Ventricular Izquierda/fisiología , Miocitos Cardíacos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento , Índice de Severidad de la Enfermedad , Volumen Sistólico/fisiologíaRESUMEN
Pathogenicity, evolutionary history, and unusual cell organization of diplomonads are well known, particularly for Giardia and Spironucleus; however, behavior of these aerotolerant anaerobes is largely unknown. Addressing this deficit, we studied behavior of the piscine diplomonad Spironucleus vortens (ATCC 50386) in in vitro culture. Spironucleus vortens trophozoites from Angelfish, Pterophyllum scalare, were maintained axenically in modified liver digest, yeast extract, and iron (LYI) medium, at 22 °C in the dark, and subcultured weekly. Cultures were monitored every 1-2 d, by removing an aliquot, and loading cells into a hemocytometer chamber, or onto a regular microscope slide. We observed three distinct swimming behaviors: (i) spontaneous formation of swarms, reaching 200 µm in diameter, persisting for up to several min in situ, (ii) directional movement of the swarm, via collective motility, and (iii) independent swimming of trophozoites to form a band (aggregation), presumably at the location of optimal environmental conditions. These behaviors have not previously been reported in Spironucleus. The observation that flagellate motility can change, from individual self-propulsion to complex collective swarming motility, prompts us to advocate S. vortens as a new model for study of group behavioral dynamics, complementing emerging studies of collective swimming in flagellated bacteria.
Asunto(s)
Cíclidos , Diplomonadida/fisiología , Enfermedades de los Peces/parasitología , Infecciones Protozoarias en Animales/parasitología , Animales , Diplomonadida/crecimiento & desarrollo , Trofozoítos/crecimiento & desarrollo , Trofozoítos/fisiologíaRESUMEN
Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.