Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579162

RESUMEN

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34697236

RESUMEN

Across many cities, estimates of methane emissions from natural gas (NG) distribution and end use based on atmospheric measurements have generally been more than double bottom-up estimates. We present a top-down study of NG methane emissions from the Boston urban region spanning 8 y (2012 to 2020) to assess total emissions, their seasonality, and trends. We used methane and ethane observations from five sites in and around Boston, combined with a high-resolution transport model, to calculate methane emissions of 76 ± 18 Gg/yr, with 49 ± 9 Gg/yr attributed to NG losses. We found no significant trend in the NG loss rate over 8 y, despite efforts from the city and state to increase the rate of repairing NG pipeline leaks. We estimate that 2.5 ± 0.5% of the gas entering the urban region is lost, approximately three times higher than bottom-up estimates. We saw a strong correlation between top-down NG emissions and NG consumed on a seasonal basis. This suggests that consumption-driven losses, such as in transmission or end-use, may be a large component of emissions that is missing from inventories, and require future policy action. We also compared top-down NG emission estimates from six US cities, all of which indicate significant missing sources in bottom-up inventories. Across these cities, we estimate NG losses from distribution and end use amount to 20 to 36% of all losses from the US NG supply chain, with a total loss rate of 3.3 to 4.7% of NG from well pad to urban consumer, notably larger than the current Environmental Protection Agency estimate of 1.4% [R. A. Alvarez et al., Science 361, 186-188 (2018)].

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930838

RESUMEN

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biomasa , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera , Ecosistema , Incendios , Ozono/análisis , Ozono/química
4.
Glob Chang Biol ; 29(21): 6077-6092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37698497

RESUMEN

Understanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events. We found that the forest responded strongly to El Niño-Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). Partitioning ET by an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress-induced reductions in canopy conductance (Gs ) drove T declines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higher T and lower E, with little change in seasonal ET. Both El Niño-Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet-season leaf area index. However, only during El Niño 2015-2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown of Gs and significant leaf shedding). Drought-reduced T and Gs , higher H and E, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post-drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin-scale threshold-crossing changes in forest energy and water cycling, leading to slow-down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

5.
Nature ; 531(7593): 225-8, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26961656

RESUMEN

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/metabolismo , Ecosistema , Calentamiento Global/estadística & datos numéricos , Efecto Invernadero/estadística & datos numéricos , Metano/metabolismo , Óxido Nitroso/metabolismo , Agricultura/estadística & datos numéricos , Asia , Dióxido de Carbono/análisis , Calentamiento Global/prevención & control , Efecto Invernadero/prevención & control , Actividades Humanas/estadística & datos numéricos , Metano/análisis , Óxido Nitroso/análisis
6.
Environ Sci Technol ; 55(3): 1487-1496, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33474936

RESUMEN

Diverse airborne microbes affect human health and biodiversity, and the Sahara region of West Africa is a globally important source region for atmospheric dust. We collected size-fractionated (>10, 10-2.5, 2.5-1.0, 1.0-0.5, and <0.5 µm) atmospheric particles in Mali, West Africa and conducted the first cultivation-independent study of airborne microbes in this region using 16S rRNA gene sequencing. Abundant and diverse microbes were detected in all particle size fractions at levels higher than those previously hypothesized for desert regions. Average daily abundance was 1.94 × 105 16S rRNA copies/m3. Daily patterns in abundance for particles <0.5 µm differed significantly from other size fractions likely because they form mainly in the atmosphere and have limited surface resuspension. Particles >10 µm contained the greatest fraction of daily abundance (51-62%) and had significantly greater diversity than smaller particles. Greater bacterial abundance of particles >2.5 µm that are bigger than the average bacterium suggests that most airborne bacteria are present as aggregates or attached to particles rather than as free-floating cells. Particles >10 µm have very short atmospheric lifetimes and thus tend to have more localized origins. We confirmed the presence of several potential pathogens using polymerase chain reaction that are candidates for viability and strain testing in future studies. These species were detected on all particle sizes tested, including particles <2.5 µm that are expected to undergo long-range transport. Overall, our results suggest that the composition and sources of airborne microbes can be better discriminated by collecting size-fractionated samples.


Asunto(s)
Polvo , Microbiota , África del Norte , Microbiología del Aire , Polvo/análisis , Humanos , Malí , Tamaño de la Partícula , ARN Ribosómico 16S/genética
7.
Proc Natl Acad Sci U S A ; 115(29): 7491-7496, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967154

RESUMEN

With the pending withdrawal of the United States from the Paris Climate Accord, cities are now leading US actions toward reducing greenhouse gas emissions. Implementing effective mitigation strategies requires the ability to measure and track emissions over time and at various scales. We report CO2 emissions in the Boston, MA, urban region from September 2013 to December 2014 based on atmospheric observations in an inverse model framework. Continuous atmospheric measurements of CO2 from five sites in and around Boston were combined with a high-resolution bottom-up CO2 emission inventory and a Lagrangian particle dispersion model to determine regional emissions. Our model-measurement framework incorporates emissions estimates from submodels for both anthropogenic and biological CO2 fluxes, and development of a CO2 concentration curtain at the boundary of the study region based on a combination of tower measurements and modeled vertical concentration gradients. We demonstrate that an emission inventory with high spatial and temporal resolution and the inclusion of urban biological fluxes are both essential to accurately modeling annual CO2 fluxes using surface measurement networks. We calculated annual average emissions in the Boston region of 0.92 kg C·m-2·y-1 (95% confidence interval: 0.79 to 1.06), which is 14% higher than the Anthropogenic Carbon Emissions System inventory. Based on the capability of the model-measurement approach demonstrated here, our framework should be able to detect changes in CO2 emissions of greater than 18%, providing stakeholders with critical information to assess mitigation efforts in Boston and surrounding areas.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Modelos Teóricos , Remodelación Urbana , Boston
8.
Proc Natl Acad Sci U S A ; 114(25): E4905-E4913, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584119

RESUMEN

We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.

9.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484001

RESUMEN

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

10.
Environ Sci Technol ; 53(15): 8957-8966, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31265266

RESUMEN

Simulation of the planetary boundary layer (PBL) is key for forecasting air quality and estimating greenhouse gas (GHG) emissions in cities. Here we conducted the first long-term and continuous study of PBL heights (PBLHs) in Boston, MA, using a compact lidar instrument. We developed an image recognition algorithm to estimate PBLHs from the lidar measurements and evaluated simulations of the PBL from seven numerical weather prediction (NWP) model versions, which showed different systematic errors and variability in simulating the PBLHs (discrepancies from -2.5 to 4.0 km). The NWP model with the best overall agreement for the fully developed PBL had R2 = 0.72 and a bias of only 0.128 km. However, this model predicted a notable number of anomalously high carbon dioxide concentrations at ground stations, because it occasionally significantly underestimated the PBLH. We also developed a novel method that combines lidar data with footprints from a Lagrangian particle dispersion model to identify long-range transport of air pollution in the nocturnal residual layer. Our framework was powerful in evaluating the performance of models used to estimate air pollution and GHG emissions in cities, which is critical to track progress on emission reduction targets and guide effective policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Boston , Ciudades , Monitoreo del Ambiente , Modelos Teóricos
11.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

12.
Proc Natl Acad Sci U S A ; 113(28): 7733-8, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354511

RESUMEN

With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

13.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699476

RESUMEN

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Asunto(s)
Frío , Metano/análisis , Tundra , Regiones Árticas , Monitoreo del Ambiente , Modelos Teóricos , Estaciones del Año , Suelo , Humedales
14.
New Phytol ; 219(3): 914-931, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786858

RESUMEN

The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.


Asunto(s)
Sequías , Bosques , Biomasa , Dióxido de Carbono/farmacología , Simulación por Computador , Geografía , Modelos Teóricos , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Lluvia , América del Sur
15.
Nature ; 481(7381): 321-8, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22258611

RESUMEN

Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Ecosistema , Árboles/metabolismo , Brasil , Sequías , Incendios , Agricultura Forestal , Lluvia , Ríos , Estaciones del Año
16.
Proc Natl Acad Sci U S A ; 112(46): 14162-7, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578759

RESUMEN

Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.


Asunto(s)
Bosques , Modelos Biológicos , Fotosíntesis , Estaciones del Año , Óxidos de Azufre/metabolismo
17.
Proc Natl Acad Sci U S A ; 112(7): 1941-6, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25617375

RESUMEN

Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural , Urbanización , Boston
18.
Glob Chang Biol ; 23(2): 906-919, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27514856

RESUMEN

Molecular hydrogen (H2 ) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H2 in various ecosystems are sparse, resulting in large uncertainties in the global H2 budget. Constraining the H2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H2 fluxes at high frequency in a temperate mixed deciduous forest for 15 months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H2 . We found that Harvard Forest is a net H2 sink (-1.4 ± 1.1 kg H2  ha-1 ) with soils as the dominant H2 sink (-2.0 ± 1.0 kg H2  ha-1 ) and aboveground canopy emissions as the dominant H2 source (+0.6 ± 0.8 kg H2  ha-1 ). Aboveground emissions of H2 were an unexpected and substantial component of the ecosystem H2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H2 uptake was correlated with rhizosphere respiration rates (r = 0.8, P < 0.001), and H2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere-atmosphere exchange of H2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H2 and mechanisms linking soil H2 and carbon cycling. Results from this study should be incorporated into modeling efforts to predict the response of the H2 soil sink to changes in anthropogenic H2 emissions and shifting soil conditions with climate and land-use change.


Asunto(s)
Ecosistema , Hidrógeno/química , Microbiología del Suelo , Árboles , Carbono , Dióxido de Carbono , Bosques , Plantas , Suelo
19.
Nature ; 479(7373): 384-7, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22094699

RESUMEN

Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.


Asunto(s)
Altitud , Temperatura , Árboles/crecimiento & desarrollo , Aire/análisis , Atmósfera/análisis , Fenómenos Biofísicos , Canadá , Clima , Conservación de los Recursos Naturales , Agricultura Forestal , Estaciones del Año , Estados Unidos
20.
Proc Natl Acad Sci U S A ; 111(47): 16694-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385648

RESUMEN

We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m(-2)⋅d(-1) averaged over all of Alaska, corresponding to fluxes from wetlands of 56(-13)(+22) mg CH4⋅m(-2)⋅d(-1) if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda