Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369645

RESUMEN

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Asunto(s)
Encéfalo , Cricetulus , Péptidos Natriuréticos , Animales , Encéfalo/metabolismo , Péptidos Natriuréticos/metabolismo , Células CHO , Receptores del Factor Natriurético Atrial/metabolismo , Comunicación Paracrina , Ligandos , Anguilla/metabolismo , Sistema Endocrino/metabolismo
2.
Gen Comp Endocrinol ; 354: 114542, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685391

RESUMEN

The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).


Asunto(s)
Receptores de HFE , Receptores de HL , Animales , Receptores de HL/metabolismo , Receptores de HL/genética , Femenino , Receptores de HFE/metabolismo , Receptores de HFE/genética , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/metabolismo , Peces/metabolismo , Peces/genética , Folículo Ovárico/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36965831

RESUMEN

As part of their osmoregulatory strategy, marine elasmobranchs retain large quantities of urea to balance the osmotic pressure of the marine environment. The main source of nitrogen used to synthesize urea comes from the digestion and absorption of food across the gastrointestinal tract. In this study we investigated possible mechanisms of nitrogen movement across the spiral valve of the cloudy catshark (Scyliorhinus torazame) through the molecular identification of two Rhesus glycoprotein ammonia transporters (Rhp2 and Rhbg) and a urea transporter (UT). We used immunohistochemistry to determine the cellular localizations of Rhp2 and UT. Within the spiral valve, Rhp2 was expressed along the apical brush border membrane, and UT was expressed along the basolateral membrane and the blood vessels. The mRNA abundance of Rhp2 was significantly higher in all regions of the spiral valve of fasted catsharks compared to fed catsharks. The mRNA abundance of UT was significantly higher in the anterior spiral valve of fasted catsharks compared to fed. The mRNA transcript of four ornithine urea cycle (OUC) enzymes were detected along the length of the spiral valve and in the renal tissue, indicating the synthesis of urea via the OUC occurs in these tissues. The presence of Rhp2, Rhbg, and UT along the length of the spiral valve highlights the importance of ammonia and urea movement across the intestinal tissues, and increases our understanding of the mechanisms involved in maintaining whole-body nitrogen homeostasis in the cloudy catshark.


Asunto(s)
Elasmobranquios , Nitrógeno , Animales , Amoníaco , ARN Mensajero , Urea , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Urea
4.
Fish Physiol Biochem ; 49(4): 751-767, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464181

RESUMEN

The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.


Asunto(s)
Branquias , Oncorhynchus keta , Animales , Branquias/metabolismo , Oncorhynchus keta/genética , Oncorhynchus keta/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Isoformas de Proteínas/genética , Agua de Mar , Agua Dulce , Sodio , Hibridación in Situ
5.
Gen Comp Endocrinol ; 327: 114076, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710034

RESUMEN

The many diverse reproductive strategies of elasmobranchs (sharks, skates and rays) from lecithotrophic oviparity to matrotrophic viviparity have attracted significant research attention. However, the endocrine control of elasmobranch reproduction is less well-documented largely due to their reproductive characteristics, such as a long reproductive cycle, and/or repeated internal fertilization using stored sperm in oviparous species. In the present study, for the first time, we succeeded in non-invasive monitoring of the continuing egg-laying cycle of the cloudy catshark Scyliorhinus torazame using portable ultrasound devices. Furthermore, long-term simultaneous monitoring of the egg-laying cycle and measurement of plasma sex steroids revealed cycling patterns of estradiol-17ß (E2), testosterone (T) and progesterone (P4). In particular, a decline in T followed by a reciprocal surge in plasma P4 were consistently observed prior to the appearance of the capsulated eggs, implying that P4 is likely associated with the ovulation and/or egg-case formation. While the cycling pattern of E2 was not as apparent as those of T and P4, threshold levels of E2 (>5 ng/mL) and T (>1 ng/mL) appeared to be crucial in the continuation of egg-laying cycle. The possibility to trace the dynamics of plasma sex steroids in a single individual throughout the reproductive cycles makes the catshark a useful model for regulatory and mechanistic studies of elasmobranch reproduction.


Asunto(s)
Oviparidad , Tiburones , Animales , Estradiol , Femenino , Hormonas Esteroides Gonadales , Masculino , Progesterona , Reproducción , Semen , Ultrasonografía
6.
Environ Microbiol ; 22(9): 3784-3802, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618094

RESUMEN

Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin-angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.


Asunto(s)
Microbioma Gastrointestinal , Presión Osmótica/fisiología , Aclimatación , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Oryzias , Concentración Osmolar , Sistema Renina-Angiotensina/fisiología , Salinidad , Agua de Mar/química
7.
Cell Tissue Res ; 380(3): 499-512, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31900664

RESUMEN

We investigated the morphological and histological changes in eel esophagus during the course of freshwater (FW) to seawater (SW) transfer and identified multiple types of mucus cells from tissues that were fixed using Carnoy's solution to retain the mucus structure. The FW esophageal epithelium is stratified and composed of superficial cells, mucus cells, club cells (exocrine cells with a large vacuole), and basal cells. Two types of periodic acid-Schiff (PAS)-positive mucus cells were identified, and they can be further distinguished by the periodic acid-thionin Schiff/KOH/PAS (PAT) method, indicating that C7/9- and C8-sialic acids were produced. Isolectin B4-positive mucus cells were found among the C8-sialic acid-producing cells and located at the tips of the villi at mid-posterior regions of the FW esophagus. The two different muci were immiscible and may form separate layers to protect the tissues from the high osmolality of imbibed SW during early SW acclimation. The densities of club cells and isolectin B4-positive cells decreased after SW acclimation, and cuboidal/columnar epithelial cells subsequently developed for active Na+ and Cl- absorption. Cuboidal/columnar epithelial cells proliferated in scattered array rather than at the bases of the villi, thereby retaining the characteristic of the stratified epithelium. Prominent leukocyte invasion was found at the base of the stratified epithelium at early SW transfer, indicating that the immune system was also activated in response to antigen exposure from imbibed SW. The mucus composition in FW is more complicated than that in SW, fueling further studies for their functions to form unstirred layers as osmoregulatory barriers.


Asunto(s)
Anguilla/fisiología , Células Epiteliales , Esófago , Aclimatación , Animales , Células Epiteliales/citología , Epitelio , Esófago/citología , Agua Dulce , Agua de Mar , Equilibrio Hidroelectrolítico
8.
Gen Comp Endocrinol ; 282: 113215, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276671

RESUMEN

RT-PCR analysis of gar pituitary and brain indicated that different combinations of gar melanocortin receptor mRNAs are present in the same tissues with mRNAs for gar mrap1 and gar mrap2. Against this background, an objective of this study was to determine whether the ligand sensitivity for either ACTH or α-MSH was affected when gar (g) melanocortin receptors (Mcrs) were co-expressed with either of the accessory proteins gMrap1 or gMrap2 in Chinese Hamster Ovary cells. The results indicated that gMc2r has an obligatory requirement for co-expression with gMrap1 in order for the receptor to be activated by hACTH(1-24). In addition, activation of gMc2r did not occur when the receptor was expressed alone or co-expressed with gMrap2. Furthermore, co-expression of gMc2r with gMrap1 followed by stimulation with NDP-MSH resulted in a low level of activation (only at 10-7 M and 10-6 M). However, gMc1r, gMc3r, gMc4r, and gMc5r responded to stimulation by NDP-MSH in a more robust manner. Co-expression of gMc1r, gMc3r, gMc4r, and gMc5r with gMRAP1 had no effect on sensitivity to stimulation by NDP-MSH or hACTH(1-24). Co-expression with gMRAP2 had no negative or positive effect on ligand sensitivity for gMc1r, gMc3r, and gMc5r, however this treatment did increase the activation of CHO cells transfected with gMc4r following stimulation with both hACTH(1-24) (p < 0.001), and NDP-MSH (p < 0.001). Co-expression of gMC5R with either gMRAP1 or gMRAP2 increased trafficking of gMC5R to the plasma membrane. These pharmacological observations are compared to the response of melanocortin receptors from other neopterygian fishes, cartilaginous fishes, and tetrapods to stimulation by ACTH(1-24) and forms of α-MSH.


Asunto(s)
Peces/metabolismo , Receptores de Melanocortina/metabolismo , Transducción de Señal , Hormona Adrenocorticotrópica/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Peces/genética , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Ligandos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Melanocortina/química , Receptores de Melanocortina/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-31493553

RESUMEN

The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-dependent SW acclimating ability in chum salmon alevins and found a sharp increase in SW tolerance during development that resembles the physiological parr-smolt transformation seen in other salmonids. Perturbation of plasma Na+ after SW exposure was prominent from the hatched embryo stage to emerged alevins, but the plasma Na+ became highly stable and more resistant to perturbation soon after complete absorption of yolk. Marker gene expression for SW-ionocytes including Na/K-ATPase (NKA α1b), Na-K-Cl cotransporter 1a (NKCC1a), Na/H exchanger 3a (NHE3a), cystic fibrosis transmembrane conductance regulators (CFTR I and CFTR II) were all upregulated profoundly at the same stage when the alevins were challenged by SW, suggesting that the stability of plasma Na+ concentration was partly a result of elevated osmoregulatory capability. FW-ionocyte markers including NKA α1a and NHE3b were consistently downregulated independent of stage by SW exposure, suggesting that embryos at all stages respond to salinity challenge, but the increase in SW osmoregulatory capability is restricted to the developmental stage after emergence. We propose that the "smoltification period" is condensed and integrated into the early development of chum salmon, and our results can be extrapolated to the future studies on hormonal controls and developmental triggers for smoltification in salmonids.


Asunto(s)
Adaptación Fisiológica , Oncorhynchus keta/crecimiento & desarrollo , Oncorhynchus keta/fisiología , Osmorregulación/fisiología , Animales , Peso Corporal , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Oncorhynchus keta/sangre , Oncorhynchus keta/genética , Concentración Osmolar , Osmorregulación/genética , Salinidad , Sodio/sangre
10.
Artículo en Inglés | MEDLINE | ID: mdl-27322796

RESUMEN

Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Anguilas/genética , Proteínas de Peces/genética , Osmorregulación/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Regulador de Conductancia de Transmembrana de Fibrosis Quística/clasificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Anguilas/metabolismo , Anguilas/fisiología , Proteínas de Peces/metabolismo , Agua Dulce , Perfilación de la Expresión Génica/métodos , Genes Duplicados/genética , Variación Genética , Branquias/metabolismo , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Osmorregulación/fisiología , Fosforilación , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agua de Mar , Homología de Secuencia de Aminoácido
11.
BMC Genomics ; 15: 1134, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25520040

RESUMEN

BACKGROUND: Teleost intestine is crucial for seawater acclimation by sensing osmolality of imbibed seawater and regulating drinking and water/ion absorption. Regulatory genes for transforming intestinal function have not been identified. A transcriptomic approach was used to search for such genes in the intestine of euryhaline medaka. RESULTS: Quantitative RNA-seq by Illumina Hi-Seq Sequencing method was performed to analyze intestinal gene expression 0 h, 1 h, 3 h, 1 d, and 7 d after seawater transfer. Gene ontology (GO) enrichment results showed that cell adhesion, signal transduction, and protein phosphorylation gene categories were augmented soon after transfer, indicating a rapid reorganization of cellular components and functions. Among >50 transiently up-regulated transcription factors selected via co-expression correlation and GO selection, five transcription factors, including CEBPB and CEBPD, were confirmed by quantitative PCR to be specific to hyperosmotic stress, while others were also up-regulated after freshwater control transfer, including some well-known osmotic-stress transcription factors such as SGK1 and TSC22D3/Ostf1. Protein interaction networks suggest a high degree of overlapping among the signaling of transcription factors that respond to osmotic and general stresses, which sheds light on the interpretation of their roles during hyperosmotic stress and emergency. CONCLUSIONS: Since cortisol is an important hormone for seawater acclimation as well as for general stress in teleosts, emergency and osmotic challenges could have been evolved in parallel and resulted in the overlapped signaling networks. Our results revealed important interactions among transcription factors and offer a multifactorial perspective of genes involved in seawater acclimation.


Asunto(s)
Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Mucosa Intestinal/metabolismo , Oryzias/genética , Oryzias/metabolismo , Ósmosis , Factores de Transcripción/metabolismo , Animales , Mapeo Cromosómico , Agua Dulce/química , Ontología de Genes , Mapeo de Interacción de Proteínas , Agua de Mar/química , Regulación hacia Arriba
12.
Commun Biol ; 7(1): 408, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570609

RESUMEN

The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.


Asunto(s)
Ornitorrinco , Tachyglossidae , Animales , Filogenia , Ornitorrinco/genética , Tachyglossidae/genética , Estómago , Peces/genética
13.
Gen Comp Endocrinol ; 178(2): 250-8, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705037

RESUMEN

Our knowledge of complexity of the renin-angiotensin system (RAS) has grown in recent years and various angiotensin peptides including Ang II, Ang III, Ang IV, and Ang (1-7) were found to have specific functions. Using a combination of HPLC and radioimmunoassay (RIA), we established a high resolution method to quantify various angiotensin subtypes in the plasma of eel acclimated to deionized water (dW), freshwater (FW), seawater (SW), and double-strength seawater (DSW). [Asn(1), Val(5)]-Ang II, [Asp(1), Val(5)]-Ang II, [Val(4)]-Ang III, and [Val(3)]-Ang IV are all present in the circulation and both Ang II subtypes were significantly higher in DSW eel. When the eel was transferred from FW to SW, plasma immunoreactive (ir) Ang II concentration increased and its levels were highly correlated to plasma osmolality, suggesting that the elevated plasma osmolality is the major stimulus for activating the RAS during high salinity transfer. To examine the conversion of [Asn(1)] to [Asp(1)] residue in vivo and in vitro, synthetic [Asn(1), Val(5)]-Ang II was injected into the circulation or incubated with plasma, but the production of [Asp(1), Val(5)]-Ang II was insignificant, which implies that the conversion may occur at the angiotensinogen level. An asparaginase assay was further developed for measuring asparaginase activity and the highest activity was in liver in both FW and SW eel. This new method of analysis can be extended to study the endogenous angiotensin ligands in the local RAS. The potential significance of [Asn(1)] to [Asp(1)] conversion on Ang II metabolism and function is discussed.


Asunto(s)
Angiotensinas/sangre , Anguilas/sangre , Agua de Mar , Animales , Anguilas/fisiología , Salinidad
14.
PLoS One ; 17(3): e0265428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290397

RESUMEN

Forms of embryonic nutrition are highly diverse in cartilaginous fishes, which contain oviparity, yolk-sac viviparity and several types of matrotrophic viviparity (histotrophy, oophagy, and placentotrophy). The molecular mechanisms of embryonic nutrition are poorly understood in these animals as few species are capable of reproducing in captivity. Oviparous cartilaginous fishes solely depend on yolk nutrients for their growth and development. In the present study, we compared the contribution to embryonic nutrition of the embryonic intestine with the yolk sac membrane (YSM). RNA-seq analysis was performed on the embryonic intestine and YSM of the oviparous cloudy catshark Scyliorhinus torazame to identify candidate genes involved in nutrient metabolism to further the understanding of nutrient utilization of developing embryos. RNA-seq discovery was subsequently confirmed by quantitative PCR analysis and we identified increases in several amino acid transporter genes (slc3a1, slc6a19, slc3a2, slc7a7) as well as genes involved in lipid absorption (apob and mtp) in the intestine after 'pre-hatching', which is a developmental event marked by an early opening of the egg case about 4 months before hatching. Although a reciprocal decrease in the nutritional role of YSM was expected after the intestine became functional, we observed similar increases in gene expression among amino acid transporters, lipid absorption molecules, and lysosomal cathepsins in the extraembryonic YSM in late developmental stages. Ultrastructure of the endodermal cells of YSM showed that yolk granules were incorporated by endocytosis, and the number of granules increased during development. Furthermore, the digestion of yolk granules in the YSM and nutrient transport through the basolateral membrane of the endodermal cells appeared to be enhanced after pre-hatching. These findings suggest that nutrient digestion and absorption is highly activated in both intestine and YSM after pre-hatching in catshark embryos, which supports the rapid growth at late developmental stages.


Asunto(s)
Elasmobranquios , Oviparidad , Animales , Peces , Lípidos , Nutrientes , Saco Vitelino/metabolismo
15.
Front Physiol ; 13: 953665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017340

RESUMEN

Most cartilaginous fishes live in seawater (SW), but a few exceptional elasmobranchs (sharks and rays) are euryhaline and can acclimate to freshwater (FW) environments. The plasma of elasmobranchs is high in NaCl and urea concentrations, which constrains osmotic water loss. However, these euryhaline elasmobranchs maintain high levels of plasma NaCl and urea even when acclimating to low salinity, resulting in a strong osmotic gradient from external environment to body fluid. The kidney consequently produces a large volume of dilute urine to cope with the water influx. In the present study, we investigated the molecular mechanisms of dilute urine production in the kidney of Japanese red stingray, Hemitrygon akajei, transferred from SW to low-salinity environments. We showed that red stingray maintained high plasma NaCl and urea levels by reabsorbing more osmolytes in the kidney when transferred to low salinity. RNA-seq and qPCR analyses were conducted to identify genes involved in NaCl and urea reabsorption under the low-salinity conditions, and the upregulated gene expressions of Na+-K+-Cl- cotransporter 2 (nkcc2) and Na+/K+-ATPase (nka) were found in the FW-acclimated individuals. These upregulations occurred in the early distal tubule (EDT) in the bundle zone of the kidney, which coils around the proximal and collecting tubules to form the highly convoluted structure of batoid nephron. Considering the previously proposed model for urea reabsorption, the upregulation of nkcc2 and nka not only causes the reabsorption of NaCl in the EDT, but potentially also supports enhanced urea reabsorption and eventually the production of dilute urine in FW-acclimated individuals. We propose advantageous characteristics of the batoid-type nephron that facilitate acclimation to a wide range of salinities, which might have allowed the batoids to expand their habitats.

16.
PLoS One ; 17(9): e0273670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36070298

RESUMEN

Environmental DNA (eDNA) is increasingly used to noninvasively monitor aquatic animals in freshwater and coastal areas. However, the use of eDNA in the open ocean (hereafter referred to OceanDNA) is still limited because of the sparse distribution of eDNA in the open ocean. Small pelagic fish have a large biomass and are widely distributed in the open ocean. We tested the performance of two OceanDNA analysis methods-species-specific qPCR (quantitative polymerase chain reaction) and MiFish metabarcoding using universal primers-to determine the distribution of small pelagic fish in the open ocean. We focused on six small pelagic fish species (Sardinops melanostictus, Engraulis japonicus, Scomber japonicus, Scomber australasicus, Trachurus japonicus, and Cololabis saira) and selected the Kuroshio Extension area as a testbed, because distribution of the selected species is known to be influenced by the strong frontal structure. The results from OceanDNA methods were compared to those of net sampling to test for consistency. Then, we compared the detection performance in each target fish between the using of qPCR and MiFish methods. A positive correlation was evident between the qPCR and MiFish detection results. In the ranking of the species detection rates and spatial distribution estimations, comparable similarity was observed between results derived from the qPCR and MiFish methods. In contrast, the detection rate using the qPCR method was always higher than that of the MiFish method. Amplification bias on non-target DNA and low sample DNA quantity seemed to partially result in a lower detection rate for the MiFish method; the reason is still unclear. Considering the ability of MiFish to detect large numbers of species and the quantitative nature of qPCR, the combined usage of the two methods to monitor quantitative distribution of small pelagic fish species with information of fish community structures was recommended.


Asunto(s)
ADN Ambiental , Perciformes , Animales , Biodiversidad , ADN/análisis , ADN/genética , ADN Ambiental/genética , Peces/genética , Océanos y Mares , Perciformes/genética
17.
Sci Rep ; 10(1): 21531, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298993

RESUMEN

Environmental DNA (eDNA) is increasingly popular as a useful non-invasive method to monitor and study biodiversity and community structure in freshwater and marine environments. To effectively extract eDNA from the filter surface is a fundamental factor determining the representativeness of the samples. We improved the eDNA extraction efficiency of an established Sterivex method by 12- to 16-fold using a larger volume of lysis buffer mix coupled with backflushing the cartridges. The DNeasy extraction column could be overloaded when the environmental sample input is high, possibly due to a higher nonspecific binding present in environmental samples, thus resulting in a relatively lower quantity measured. Therefore, we included an internal control DNA in the extraction to monitor the extraction and purification efficiencies in field samples, which is crucial for quantification of original eDNA concentration. The use of Takara Probe qPCR Mix supplemented with protein-based additives improved the robustness of the real time PCR assay on inhibitor-rich environmental samples, but prior purification by Qiagen PowerClean Pro Cleanup kit could be essential for inhibitor-rich water samples, even though the recovery rate was unexpectedly low (average 33.0%). The improved extraction and quantification complement the qualitative analyses including metabarcoding and metagenomics in field application.


Asunto(s)
ADN Ambiental/aislamiento & purificación , ADN/aislamiento & purificación , Hidrobiología/métodos , Animales , Biodiversidad , ADN/genética , ADN Ambiental/genética , Ecosistema , Monitoreo del Ambiente/métodos , Filtración/métodos , Metagenómica/métodos , Agua/análisis
18.
Mol Cell Endocrinol ; 507: 110780, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142860

RESUMEN

In euryhaline fishes, atrial and B-type natriuretic peptides are important hormones in hypo-osmoregulation, whereas osmoregulatory functions of C-type natriuretic peptides (CNPs) remain to be investigated. Although four CNP isoforms (CNP1-4) are mainly expressed in the brain, multiorgan expression of CNP3 was found in euryhaline Japanese eel, Anguilla japonica. Here we identified the CNP3-expressing cells and examined their response to osmotic stress in eel. CNP3 was expressed in several endocrine cells: prolactin-producing cells (pituitary), glucagon-producing cells (pancreas), and cardiomyocytes (heart). Pituitary CNP3 expression was the highest among organs and was decreased following seawater transfer, followed by a decrease in the freshwater-adaptating (hyper-osmoregulatory) hormone prolactin. We also showed the negative correlation between CNP3/prolactin expression in the pituitary and plasma Cl- concentration, but not for plasma Na+ concentration. These results suggest that CNP3 in the pituitary (and pancreas) plays a critical role in freshwater adaptation of euryhaline eel together with prolactin.


Asunto(s)
Anguilla , Cloruros/sangre , Lactotrofos/metabolismo , Péptido Natriurético Tipo-C/genética , Agua de Mar , Aclimatación/genética , Aclimatación/fisiología , Anguilla/sangre , Anguilla/genética , Anguilla/metabolismo , Animales , Regulación hacia Abajo/genética , Péptido Natriurético Tipo-C/metabolismo , Concentración Osmolar , Osmorregulación/genética , Prolactina/metabolismo , Agua de Mar/química , Equilibrio Hidroelectrolítico/genética
19.
PLoS One ; 14(9): e0222052, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31483846

RESUMEN

To understand the ecology of juvenile chum salmon during early marine life after their downstream migration, we developed a quantitative PCR-based environmental DNA (eDNA) method specific for chum salmon and investigated the spatiotemporal distribution of eDNA in Otsuchi Bay, Iwate, Japan. Indoor aquarium experiments demonstrated the following characteristics of chum salmon eDNA: (1) the eDNA shedding and degradation were time- and water temperature-dependent and the bacterial abundance could contribute to the eDNA decay, (2) fecal discharge may not be the main source of eDNA, and (3) a strong positive Pearson correlation was found between the number of juveniles and the eDNA amounts. As we discovered strong PCR inhibition from the seawater samples of the bay, we optimized the eDNA assay protocol for natural seawater samples by adding a further purification step and modification of PCR mixture. The intensive eDNA analysis in the spring of 2017 and 2018 indicated that juvenile chum salmon initially inhabited in shallow waters in the shorefront area and then spread over the bay from January to June. The eDNA data also pointed out that outmigration of juvenile chum salmon to open ocean temporarily suspended in April, possibly being associated with the dynamics of the Oyashio Current as suggested by a previous observation. The eDNA method thus enables us large-scale and comprehensive surveys without affecting populations to understand the spatiotemporal dynamics of juvenile chum salmon.


Asunto(s)
ADN Ambiental , Monitoreo del Ambiente , Oncorhynchus keta/genética , Análisis Espacio-Temporal , Animales , Bahías , Japón , Especificidad de la Especie , Encuestas y Cuestionarios
20.
Zoological Lett ; 3: 22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29255617

RESUMEN

BACKGROUND: Teleosts transiting from freshwater (FW) to seawater (SW) environments face an immediate osmotic stress from ion influxes and water loss, but some euryhaline species such as eels can maintain a stable plasma osmolality during early SW exposure. The time course changes in the gene expression, protein abundance, and localization of key ion transporters suggested that the reversal of the ion transport systems was gradual, and we investigate how eels utilize a Na-binding strategy to slow down the ion invasion and complement the transporter-mediated osmoregulation. RESULTS: Using an electron probe micro-analyzer, we localized bound Na in various eel tissues in response to SW transfer, suggesting that the Na-binding molecules were produced to sequester excess ionic Na+ to negate its osmotic potential, thus preventing acute cellular dehydration. Mucus cells were acutely activated in digestive tract, gill, and skin after SW transfer, producing Na-binding molecule-containing mucus layers that fence off high osmolality of SW. Using gel filtration HPLC, some molecules at 18 kDa were found to bind Na in the luminal secretion of esophagus and intestine, and higher binding was associated with SW transfer. Transcriptome and protein interaction results indicated that downregulation of Notch and ß-catenin pathways, and dynamic changes in TGFß pathways in intestine were involved during early SW transition, supporting the observed histological changes on epithelial desquamation and increased mucus production. CONCLUSIONS: The timing for the activation of the Na-binding mechanism to alleviate the adverse osmotic gradient was temporally complementary to the subsequent remodeling of branchial ionocytes and transporting epithelia of the digestive tract. The strategy to manipulate the osmotic potential of Na+ by specific binding molecules is similar to the osmotically inactive Na described in human skin and muscle. The Na-binding molecules provide a buffer to tolerate the salinity changes, which is advantageous to the estuary and migrating fishes. Our data pave the way to identify this unknown class of molecules and open a new area of vertebrate osmoregulation research.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda