Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell ; 175(4): 1014-1030.e19, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343900

RESUMEN

Although current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments. Surprisingly, we observed multiple subpopulations of monocytes/macrophages, distinguishable by the markers CD206, CX3CR1, CD1d, and iNOS, that change over time during ICT in a manner partially dependent on IFNγ. Our data support the hypothesis that this macrophage polarization/activation results from effects on circulatory monocytes and early macrophages entering tumors, rather than on pre-polarized mature intratumoral macrophages.


Asunto(s)
Linfocitos/inmunología , Células Mieloides/inmunología , Neoplasias/inmunología , Análisis de la Célula Individual , Transcriptoma , Animales , Línea Celular Tumoral , Citometría de Flujo , Inmunoterapia/métodos , Interferón gamma/inmunología , Activación de Macrófagos , Masculino , Espectrometría de Masas , Ratones , Células Precursoras de Monocitos y Macrófagos/inmunología , Neoplasias/terapia
3.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402259

RESUMEN

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Asunto(s)
Homeostasis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , MicroARNs/inmunología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Células 3T3 NIH , Receptores de Interleucina-15/inmunología , Transducción de Señal/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Factor de Crecimiento Transformador beta/inmunología
5.
Blood ; 139(8): 1177-1183, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34797911

RESUMEN

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Asunto(s)
Antineoplásicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Interleucina-15/administración & dosificación , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda , Proteínas Recombinantes de Fusión/administración & dosificación , Células Alogénicas/inmunología , Femenino , Humanos , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Masculino
6.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871371

RESUMEN

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Células Asesinas Naturales , Leucemia Mieloide Aguda/terapia , Trasplante Homólogo , Donante no Emparentado
7.
J Allergy Clin Immunol ; 150(1): 1-11, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569567

RESUMEN

Recent events involving the global coronavirus pandemic have focused attention on vaccination strategies. Although tremendous advances have been made in subcutaneous and intramuscular vaccines during this time, one area that has lagged in implementation is mucosal immunization. Mucosal immunization provides several potential advantages over subcutaneous and intramuscular routes, including protection from localized infection at the site of entry, clearance of organisms on mucosal surfaces, induction of long-term immunity through establishment of central and tissue-resident memory cells, and the ability to shape regulatory responses. Despite these advantages, significant barriers remain to achieving effective mucosal immunization. The epithelium itself provides many obstacles to immunization, and the activation of immune recognition and effector pathways that leads to mucosal immunity has been difficult to achieve. This review will highlight the potential advantages of mucosal immunity, define the barriers to mucosal immunization, examine the immune mechanisms that need to be activated on mucosal surfaces, and finally address recent developments in methods for mucosal vaccination that have shown promise in generating immunity on mucosal surfaces in human trials.


Asunto(s)
Inmunización , Vacunas , Humanos , Inmunidad Mucosa , Inmunización/métodos , Membrana Mucosa , Vacunación/métodos
8.
Blood ; 136(20): 2308-2318, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32614951

RESUMEN

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR engineering would result in complementary improvements in NK cell responses against NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon γ production, degranulation, and specific killing against NK-resistant lymphoma lines and primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK cells generated from lymphoma patients exhibited improved responses against their autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a variety of NK cell-resistant tumors.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Linfoma/inmunología , Receptores Quiméricos de Antígenos , Animales , Citotoxicidad Inmunológica/inmunología , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26934220

RESUMEN

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Asunto(s)
Alanina/análogos & derivados , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Macaca mulatta/virología , Ribonucleótidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología
10.
Lancet ; 396(10246): 239-254, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711800

RESUMEN

BACKGROUND: Tenofovir alafenamide shows high antiviral efficacy and improved renal and bone safety compared with tenofovir disoproxil fumarate when used for HIV treatment. Here, we report primary results from a blinded phase 3 study evaluating the efficacy and safety of pre-exposure prophylaxis (PrEP) with emtricitabine and tenofovir alafenamide versus emtricitabine and tenofovir disoproxil fumarate for HIV prevention. METHODS: This study is an ongoing, randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial done at 94 community, public health, and hospital-associated clinics located in regions of Europe and North America, where there is a high incidence of HIV or prevalence of people living with HIV, or both. We enrolled adult cisgender men who have sex with men and transgender women who have sex with men, both with a high risk of acquiring HIV on the basis of their self-reported sexual behaviour in the past 12 weeks or their recent history (within 24 weeks of enrolment) of bacterial sexually transmitted infections. Participants with current or previous use of PrEP with emtricitabine and tenofovir disoproxil fumarate were not excluded. We used a computer-generated random allocation sequence to randomly assign (1:1) participants to receive either emtricitabine (200 mg) and tenofovir alafenamide (25 mg) tablets daily, with matched placebo tablets (emtricitabine and tenofovir alafenamide group), or emtricitabine (200 mg) and tenofovir disoproxil fumarate (300 mg) tablets daily, with matched placebo tablets (emtricitabine and tenofovir disoproxil fumarate group). As such, all participants were given two tablets. The trial sponsor, investigators, participants, and the study staff who provided the study drugs, assessed the outcomes, and collected the data were masked to group assignment. The primary efficacy outcome was incident HIV infection, which was assessed when all participants had completed 48 weeks of follow-up and half of all participants had completed 96 weeks of follow-up. This full analysis set included all randomly assigned participants who had received at least one dose of the assigned study drug and had at least one post-baseline HIV test. Non-inferiority of emtricitabine and tenofovir alafenamide to emtricitabine and tenofovir disoproxil fumarate was established if the upper bound of the 95·003% CI of the HIV incidence rate ratio (IRR) was less than the prespecified non-inferiority margin of 1·62. We prespecified six secondary bone mineral density and renal biomarker safety endpoints to evaluate using the safety analysis set. This analysis set included all randomly assigned participants who had received at least one dose of the assigned study drug. This trial is registered with ClinicalTrials.gov, NCT02842086, and is no longer recruiting. FINDINGS: Between Sept 13, 2016, and June 30, 2017, 5387 (92%) of 5857 participants were randomly assigned and received emtricitabine and tenofovir alafenamide (n=2694) or emtricitabine and tenofovir disoproxil fumarate (n=2693). At the time of the primary efficacy analysis (ie, when all participants had completed 48 weeks and 50% had completed 96 weeks) emtricitabine and tenofovir alafenamide was non-inferior to emtricitabine and tenofovir disoproxil fumarate for HIV prevention, as the upper limit of the 95% CI of the IRR, was less than the prespecified non-inferiority margin of 1·62 (IRR 0·47 [95% CI 0·19-1·15]). After 8756 person-years of follow-up, 22 participants were diagnosed with HIV, seven participants in the emtricitabine and tenofovir alafenamide group (0·16 infections per 100 person-years [95% CI 0·06-0·33]), and 15 participants in the emtricitabine and tenofovir disoproxil fumarate group (0·34 infections per 100 person-years [0·19-0·56]). Both regimens were well tolerated, with a low number of participants reporting adverse events that led to discontinuation of the study drug (36 [1%] of 2694 participants in the emtricitabine and tenofovir alafenamide group vs 49 [2%] of 2693 participants in the emtricitabine and tenofovir disoproxil fumarate group). Emtricitabine and tenofovir alafenamide was superior to emtricitabine and tenofovir disoproxil fumarate in all six prespecified bone mineral density and renal biomarker safety endpoints. INTERPRETATION: Daily emtricitabine and tenofovir alafenamide shows non-inferior efficacy to daily emtricitabine and tenofovir disoproxil fumarate for HIV prevention, and the number of adverse events for both regimens was low. Emtricitabine and tenofovir alafenamide had more favourable effects on bone mineral density and biomarkers of renal safety than emtricitabine and tenofovir disoproxil fumarate. FUNDING: Gilead Sciences.


Asunto(s)
Adenina/análogos & derivados , Fármacos Anti-VIH/uso terapéutico , Combinación Emtricitabina y Fumarato de Tenofovir Disoproxil/uso terapéutico , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Tenofovir/uso terapéutico , Adenina/efectos adversos , Adenina/uso terapéutico , Adulto , Fármacos Anti-VIH/efectos adversos , Método Doble Ciego , Emtricitabina/efectos adversos , Combinación Emtricitabina y Fumarato de Tenofovir Disoproxil/efectos adversos , Europa (Continente)/epidemiología , Femenino , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , VIH-1/efectos de los fármacos , Homosexualidad Masculina/etnología , Humanos , Masculino , América del Norte/epidemiología , Placebos/administración & dosificación , Profilaxis Pre-Exposición/métodos , Prevalencia , Seguridad , Minorías Sexuales y de Género , Tenofovir/efectos adversos , Resultado del Tratamiento
11.
Mol Pharm ; 18(2): 679-698, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491861

RESUMEN

Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Portadores de Fármacos/química , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , ARN Interferente Pequeño/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Perros , Emulsiones , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Nanopartículas/química , Poli I-C/administración & dosificación , Cultivo Primario de Células , ARN Interferente Pequeño/inmunología , Vacunación/métodos
12.
Emerg Infect Dis ; 25(5): 1019-1021, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002047

RESUMEN

We determined the prevalence of selected Rickettsiales in 362 ticks removed from outdoor workers in southwest Georgia and northwest Florida, USA. Persons submitted an average of 1.1 ticks/month. We found Ehrlichia chaffeensis in an Amblyomma maculatum tick, and Panola Mountain Ehrlichia sp. in 2 A. maculatum ticks and 1 Dermacentor variabilis tick.


Asunto(s)
Vectores Arácnidos/microbiología , Exposición Profesional , Rickettsiales/clasificación , Infestaciones por Garrapatas/epidemiología , Garrapatas/microbiología , Animales , Florida/epidemiología , Georgia/epidemiología , Humanos , Prevalencia , Rickettsiales/aislamiento & purificación
13.
Org Biomol Chem ; 17(16): 3951-3963, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30942252

RESUMEN

Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.

14.
J Allergy Clin Immunol ; 141(6): 2121-2131, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655584

RESUMEN

BACKGROUND: Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE: We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS: Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS: The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS: NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Desensibilización Inmunológica/métodos , Hipersensibilidad al Cacahuete/inmunología , Células Th2/inmunología , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Emulsiones , Femenino , Ratones , Nanoconjugados/administración & dosificación , Células Th2/efectos de los fármacos
15.
J Infect Dis ; 215(6): 920-927, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453836

RESUMEN

Background: The presence of transmitted drug resistance mutations (TDRMs) in antiretroviral treatment (ART)-naive patients can adversely affect the outcome of ART. Methods: Resistance testing was conducted in 6704 ART-naive subjects predominantly from the United States and Europe in 9 clinical studies conducted by Gilead Sciences from 2000 to 2013. Results: The presence of TDRMs increased during this period (from 5.2% to 11.4%), primarily driven by an increase in nonnucleoside reverse-transcriptase (RT) inhibitor (NNRTI) resistance mutations (from 0.3% to 7.1%), particularly K103N/S (increase from 0.3% to 5.3%). Nucleoside/nucleotide RT inhibitor mutations were found in 3.1% of patients. Only 1 patient had K65R (0.01%) and 7 had M184V/I (0.1%), despite high use of tenofovir disoproxil fumarate (TDF), emtricitabine, and lamivudine and potential transmission of resistance to these drugs. At least 1 thymidine-analogue mutations was present in 2.7% of patients with 0.07% harboring T215Y/F and 2.7% harboring T215 revertant mutations (T215rev). Patients with the combination of M41L + L210W + T215rev showed full human immunodeficiency virus RNA suppression while receiving a TDF- or tenofovir alafenamide-containing regimen. Conclusions: There was an overall increase of TDRMs among patients enrolling in clinical trials from 2000 through 2013, driven primarily by an increase in NNRTI resistance. However, the presence of common TDRMs, including thymidine-analogue mutations/T215rev, showed no impact on response to TDF- or tenofovir alafenamide-containing regimens.


Asunto(s)
Adenina/análogos & derivados , Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Tenofovir/uso terapéutico , Adenina/uso terapéutico , Adulto , Alanina , Emtricitabina/uso terapéutico , Europa (Continente) , Femenino , VIH-1/efectos de los fármacos , Humanos , Lamivudine/uso terapéutico , Masculino , Mutación Missense , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Timidina/análogos & derivados , Estados Unidos
16.
Chembiochem ; 18(1): 126-135, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27902870

RESUMEN

Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho-nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6-nitroverataldehyde, three drug-fluorophore conjugates were synthesized: Taxol-TNB-fluorescein, Taxol-TNB-coumarin, and doxorubicin-TNB-coumarin, and long-wavelength UVA light-triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell-based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real-time monitoring of drug activation at the delivery site.


Asunto(s)
Benzaldehídos/química , Portadores de Fármacos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/toxicidad , Liberación de Fármacos/efectos de la radiación , Colorantes Fluorescentes/química , Humanos , Cinética , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/toxicidad , Fotólisis/efectos de la radiación , Rayos Ultravioleta
17.
Bioconjug Chem ; 28(12): 3016-3028, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29148732

RESUMEN

Despite their proven ability for precise and targeted release, nanoplatform systems for photocontrolled delivery often face formidable synthetic challenges, in part due to the paucity of advanced linker strategies. Here, we report on a novel linker strategy using a thioacetal ortho-nitrobenzaldehyde (TNB) cage, demonstrating its application for delivery of doxorubicin (Dox) in two nanoscale systems. This photocleavable linker, TNB(OH), which presents two identical arms, each terminated with a hydroxyl functionality, was prepared in a single step from 6-nitroveratraldehyde. TNB(OH) was used to cross-link Dox to a folate receptor (FAR)-targeting poly(amidoamine) dendrimer conjugate G5(FA)n=5.4(Dox)m=5.1, and also used to prepare an upconversion nanocrystal (UCN) conjugate, UCN-PPIX@(Dox)(G5FA), a larger core/shell nanostructure. In this core/shell nanostructure, the UCN core emits UV and visible light luminescence upon near-infrared (NIR) excitation, allowing for the photocleavage of the TNB linker as well as the photostimulation of protoporphyrin IX (PPIX) coupled as a cytotoxic photosensitizer. Drug-release experiments performed in aqueous solutions with long-wavelength ultraviolet A (UVA) light showed that Dox release occurred rapidly from its TNB linked form or from its dendrimer conjugated form with comparable decay kinetics. Cellular toxicity studies in FAR-overexpressing KB carcinoma cells demonstrated that each nanoconjugate lacked intrinsic cytotoxicity until exposed to UVA or NIR (980 nm) (for the UCN nanoconjugate), which resulted in induction of potent cytotoxicity. In summary, this new TNB strategy offers synthetic convenience in drug conjugation chemistry with the ability for the temporal control of drug activation at the delivery site.


Asunto(s)
Acetales/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Ácido Fólico/metabolismo , Nanomedicina , Fotólisis , Benzaldehídos/química , Dendrímeros/química , Portadores de Fármacos/metabolismo , Humanos , Células KB
18.
Small ; 11(45): 6078-90, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26476917

RESUMEN

Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.


Asunto(s)
Dendrímeros/química , Liberación de Fármacos , Receptor 1 de Folato/metabolismo , Imagenología Tridimensional , Luz , Nanopartículas/química , Espectroscopía Infrarroja Corta , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Endocitosis , Citometría de Flujo , Ácido Fólico/química , Humanos , Cinética , Microscopía Confocal , Nanopartículas/ultraestructura
19.
Mol Pharm ; 12(12): 4498-508, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26485315

RESUMEN

Despite extensive studies on drug delivery using multivalent complexation systems, the biophysical basis for release kinetics remains poorly defined. The present study addresses this aspect involved in the complexation of a fifth generation poly(amidoamine) (PAMAM) dendrimer with atropine, an essential antidote used for treating organophosphate poisoning. First, we designed (1)H NMR titration studies for determining the molecular basis of the drug complexation with a glutarate-modified anionic dendrimer. These provide evidence pointing to a combination of electrostatic and hydrophobic interactions as the driving forces for dendrimer complexation with the alkaloid drug molecule. Second, using LC-MS/MS spectrometry, we determined the dissociation constants (KD) at steady state and also measured the drug release kinetics of atropine complexes with four negatively charged dendrimer types. Each of these dendrimers has a high payload capacity for up to ∼ 100 atropine molecules. However, the affinity of the atropine to the carrier was highly dependent on the drug to dendrimer ratio. Thus, a complex made at a lower loading ratio (≤ 0.1) displayed greater atropine affinity (KD ≈ µM) than other complexes prepared at higher ratios (>10), which showed only mM affinity. This negative cooperative variation in affinity is tightly associated with the nonlinear release kinetics observed for each complex in which drug release occurs more slowly at the later time phase at a lower loading ratio. In summary, the present study provides novel insights on the cooperativity as the mechanistic basis for nonlinear release kinetics observed in multivalent carrier systems.


Asunto(s)
Atropina/química , Dendrímeros/química , Preparaciones Farmacéuticas/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células KB , Cinética , Espectroscopía de Resonancia Magnética/métodos , Electricidad Estática , Espectrometría de Masas en Tándem/métodos
20.
Int J Mol Sci ; 16(1): 1772-90, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25590303

RESUMEN

The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Metotrexato/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/química , Dendrímeros/química , Dendrímeros/metabolismo , Portadores de Fármacos/química , Receptores de Folato Anclados a GPI/química , Ácido Fólico/química , Humanos , Metotrexato/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda