Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Nature ; 622(7984): 810-817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853121

RESUMEN

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Asunto(s)
Aves , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Internacionalidad , Animales , África/epidemiología , Animales Salvajes/virología , Asia/epidemiología , Aves/virología , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Evolución Molecular , Especificidad del Huésped , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Mamíferos/virología , Mutación , Filogenia , Aves de Corral/virología
3.
J Infect Dis ; 230(1): 152-160, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052734

RESUMEN

BACKGROUND: The hemagglutination inhibition antibody (HAI) titer contributes only a part of vaccine-induced protection against influenza virus infections. Using causal mediation analysis, we quantified the proportion of vaccine efficacy mediated by postvaccination HAI titers. METHODS: We conducted causal mediation analyses using data from a randomized, active-comparator controlled, phase III, trial of an inactivated, split-virion seasonal quadrivalent influenza vaccine in children conducted from October 2010 to December 2011 in 8 countries. Vaccine efficacy was estimated using a weighted Cox proportional hazards model. Estimates were decomposed into the direct and indirect effects mediated by postvaccination HAI titers. RESULTS: The proportions of vaccine efficacy mediated by postvaccination HAI titers were estimated to be 22% (95% confidence interval, 18%--47%) for influenza A(H1N1), 20% (16%-39%) for influenza A(H3N2), and 37% (26%-85%) for influenza B/Victoria. CONCLUSIONS: HAI titers partially mediate influenza vaccine efficacy against influenza A(H1N1), A(H3N2), and B/Victoria. Our estimates were lower than in previous studies, possibly reflecting expected heterogeneity in antigenic similarity between vaccine and circulating viruses across seasons.


Asunto(s)
Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Eficacia de las Vacunas , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Gripe Humana/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Femenino , Virus de la Influenza B/inmunología , Masculino , Preescolar , Niño , Lactante , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
4.
Clin Infect Dis ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041887

RESUMEN

BACKGROUND: Studies have reported that repeated annual vaccination may influence influenza vaccination effectiveness in the current season. METHODS: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. In the first two years, participants received vaccination (V) or saline placebo (P) as follows: P-P, P-V, or V-V. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera collected at 5 timepoints from 95 participants were tested for antibodies against vaccine strains. RESULTS: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with smaller increases for repeat vaccinees who on average had higher pre-vaccination titers in year 2. There were statistically significant differences in the proportion of participants achieving >=four-fold rises in antibody titer for the repeat vaccinees for influenza A(H1N1), B/Victoria and B/Yamagata, but not for A(H3N2). Among participants who received vaccination in year 2, there were no statistically significant differences between the P-V and V-V groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. CONCLUSIONS: In the first two years, during which influenza did not circulate, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection.

5.
Mol Ecol ; 32(1): 198-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239465

RESUMEN

Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Teorema de Bayes , Animales Salvajes , Aves , Migración Animal , Filogenia
6.
Arch Virol ; 167(3): 871-879, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35137250

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Other coronaviruses (CoVs) can also infect humans, although the majority cause only mild respiratory symptoms. Because early diagnosis of SARS-CoV-2 is critical for preventing further transmission events and improving clinical outcomes, it is important to be able to distinguish SARS-CoV-2 from other SARS-related CoVs in respiratory samples. Therefore, we developed and evaluated a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the genes encoding the spike (S) and membrane (M) proteins to enable the rapid identification of SARS-CoV-2, including several new circulating variants and other emerging SARS-like CoVs. By analysis of in vitro-transcribed mRNA, we established multiplex RT-qPCR assays capable of detecting 5 × 10° copies/reaction. Using RNA extracted from cell culture supernatants, our multiple simultaneous SARS-CoV-2 assays had a limit of detection of 1 × 10° TCID50/mL and showed no cross-reaction with human CoVs or other respiratory viruses. We also validated our method using human clinical samples from patients with COVID-19 and healthy individuals, including nasal swab and sputum samples. This novel one-step multiplex RT-qPCR assay can be used to improve the laboratory diagnosis of human-pathogenic CoVs, including SARS-CoV-2, and may be useful for the identification of other SARS-like CoVs of zoonotic origin.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico , Estudios de Factibilidad , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941786

RESUMEN

Despite evidence that antibodies targeting the influenza virus neuraminidase (NA) protein can be protective and are broadly cross-reactive, the immune response to NA during infection is poorly understood compared to the response to hemagglutinin (HA) protein. As such, we compared the antibody profile to HA and NA in two naturally infected human cohorts in Auckland, New Zealand: (i) a serosurvey cohort, consisting of pre- and post-influenza season sera from PCR-confirmed influenza cases (n = 50), and (ii) an immunology cohort, consisting of paired sera collected after PCR-confirmation of infection (n = 94). The induction of both HA and NA antibodies in these cohorts was influenced by age and subtype. Seroconversion to HA was more frequent in those <20 years old (yo) for influenza A (serosurvey, P = 0.01; immunology, P = 0.02) but not influenza B virus infection. Seroconversion to NA was not influenced by age or virus type. Adults ≥20 yo infected with influenza A viruses were more likely to show NA-only seroconversion compared to children (56% versus 14% [5 to 19 yo] and 0% [0 to 4 yo], respectively). Conversely, children infected with influenza B viruses were more likely than adults to show NA-only seroconversion (88% [0 to 4 yo] and 75% [5 to 19 yo] versus 40% [≥20 yo]). These data indicate a potential role for immunological memory in the dynamics of HA and NA antibody responses. A better mechanistic understanding of this phenomenon will be critical for any future vaccines aimed at eliciting NA immunity.IMPORTANCE Data on the immunologic responses to neuraminidase (NA) is lacking compared to what is available on hemagglutinin (HA) responses, despite growing evidence that NA immunity can be protective and broadly cross-reactive. Understanding these NA responses during natural infection is key to exploiting these properties for improving influenza vaccines. Using two community-acquired influenza cohorts, we showed that the induction of both HA and NA antibodies after infection is influenced by age and subtypes. Such response dynamics suggest the influence of immunological memory, and understanding how this process is regulated will be critical to any vaccine effort targeting NA immunity.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Neuraminidasa/inmunología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Humanos , Memoria Inmunológica , Lactante , Recién Nacido , Gripe Humana/sangre , Gripe Humana/epidemiología , Masculino , Nueva Zelanda/epidemiología , Reacción en Cadena de la Polimerasa , Estudios Seroepidemiológicos , Adulto Joven
8.
Eur Respir J ; 55(6)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32269086

RESUMEN

BACKGROUND: During the outbreak of coronavirus disease 2019 (COVID-19), consistent and considerable differences in disease severity and mortality rate of patients treated in Hubei province compared to those in other parts of China have been observed. We sought to compare the clinical characteristics and outcomes of patients being treated inside and outside Hubei province, and explore the factors underlying these differences. METHODS: Collaborating with the National Health Commission, we established a retrospective cohort to study hospitalised COVID-19 cases in China. Clinical characteristics, the rate of severe events and deaths, and the time to critical illness (invasive ventilation or intensive care unit admission or death) were compared between patients within and outside Hubei. The impact of Wuhan-related exposure (a presumed key factor that drove the severe situation in Hubei, as Wuhan is the epicentre as well the administrative centre of Hubei province) and the duration between symptom onset and admission on prognosis were also determined. RESULTS: At the data cut-off (31 January 2020), 1590 cases from 575 hospitals in 31 provincial administrative regions were collected (core cohort). The overall rate of severe cases and mortality was 16.0% and 3.2%, respectively. Patients in Hubei (predominantly with Wuhan-related exposure, 597 (92.3%) out of 647) were older (mean age 49.7 versus 44.9 years), had more cases with comorbidity (32.9% versus 19.7%), higher symptomatic burden, abnormal radiologic manifestations and, especially, a longer waiting time between symptom onset and admission (5.7 versus 4.5 days) compared with patients outside Hubei. Patients in Hubei (severe event rate 23.0% versus 11.1%, death rate 7.3% versus 0.3%, HR (95% CI) for critical illness 1.59 (1.05-2.41)) have a poorer prognosis compared with patients outside Hubei after adjusting for age and comorbidity. However, among patients outside Hubei, the duration from symptom onset to hospitalisation (mean 4.4 versus 4.7 days) and prognosis (HR (95%) 0.84 (0.40-1.80)) were similar between patients with or without Wuhan-related exposure. In the overall population, the waiting time, but neither treated in Hubei nor Wuhan-related exposure, remained an independent prognostic factor (HR (95%) 1.05 (1.01-1.08)). CONCLUSION: There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre. Future studies to determine the reason for delaying hospitalisation are warranted.


Asunto(s)
Infecciones por Coronavirus/mortalidad , Hospitalización , Neumonía Viral/mortalidad , Adulto , Anciano , Betacoronavirus , COVID-19 , Enfermedades Cardiovasculares/epidemiología , China , Estudios de Cohortes , Comorbilidad , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico por imagen , Tos/etiología , Diabetes Mellitus/epidemiología , Brotes de Enfermedades , Disnea/etiología , Fatiga/etiología , Femenino , Fiebre/etiología , Geografía , Humanos , Hipertensión/epidemiología , Unidades de Cuidados Intensivos/estadística & datos numéricos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Pandemias , Faringitis/etiología , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico por imagen , Pronóstico , Modelos de Riesgos Proporcionales , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tiempo de Tratamiento/estadística & datos numéricos , Tomografía Computarizada por Rayos X
9.
Proc Natl Acad Sci U S A ; 114(42): 11217-11222, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28874549

RESUMEN

North American wild birds are an important reservoir of influenza A viruses, yet the potential of viruses in this reservoir to transmit and cause disease in mammals is not well understood. Our surveillance of avian influenza viruses (AIVs) at Delaware Bay, USA, revealed a group of similar H1N1 AIVs isolated in 2009, some of which were airborne-transmissible in the ferret model without prior adaptation. Comparison of the genomes of these viruses revealed genetic markers of airborne transmissibility in the Polymerase Basic 2 (PB2), PB1, PB1-F2, Polymerase Acidic-X (PA-X), Nonstructural Protein 1 (NS1), and Nuclear Export Protein (NEP) genes. We studied the role of NS1 in airborne transmission and found that NS1 mutants that were not airborne-transmissible caused limited tissue pathology in the upper respiratory tract (URT). Viral maturation was also delayed, evident as strong intranuclear staining and little virus at the mucosa. Our study of this naturally occurring constellation of genetic markers has provided insights into the poorly understood phenomenon of AIV airborne transmissibility by revealing a role for NS1 and characteristics of viral replication in the URT that were associated with airborne transmission. The transmissibility of these viruses further highlights the pandemic potential of AIVs in the wild bird reservoir and the need to maintain surveillance.


Asunto(s)
Charadriiformes/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Animales , Embrión de Pollo , Vectores de Enfermedades , Hurones , Subtipo H1N1 del Virus de la Influenza A/genética , Masculino , Sistema Respiratorio/virología , Replicación Viral
10.
J Infect Dis ; 219(3): 347-357, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30016464

RESUMEN

Background: Understanding the attack rate of influenza infection and the proportion who become ill by risk group is key to implementing prevention measures. While population-based studies of antihemagglutinin antibody responses have been described previously, studies examining both antihemagglutinin and antineuraminidase antibodies are lacking. Methods: In 2015, we conducted a seroepidemiologic cohort study of individuals randomly selected from a population in New Zealand. We tested paired sera for hemagglutination inhibition (HAI) or neuraminidase inhibition (NAI) titers for seroconversion. We followed participants weekly and performed influenza polymerase chain reaction (PCR) for those reporting influenza-like illness (ILI). Results: Influenza infection (either HAI or NAI seroconversion) was found in 321 (35% [95% confidence interval, 32%-38%]) of 911 unvaccinated participants, of whom 100 (31%) seroconverted to NAI alone. Young children and Pacific peoples experienced the highest influenza infection attack rates, but overall only a quarter of all infected reported influenza PCR-confirmed ILI, and one-quarter of these sought medical attention. Seroconversion to NAI alone was higher among children aged <5 years vs those aged ≥5 years (14% vs 4%; P < .001) and among those with influenza B vs A(H3N2) virus infections (7% vs 0.3%; P < .001). Conclusions: Measurement of antineuraminidase antibodies in addition to antihemagglutinin antibodies may be important in capturing the true influenza infection rates.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Estaciones del Año , Adolescente , Adulto , Anciano , Formación de Anticuerpos/inmunología , Niño , Preescolar , Estudios de Cohortes , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Lactante , Recién Nacido , Subtipo H3N2 del Virus de la Influenza A/inmunología , Masculino , Persona de Mediana Edad , Neuraminidasa/inmunología , Nueva Zelanda/epidemiología , Factores de Riesgo , Estudios Seroepidemiológicos , Adulto Joven
11.
Virol J ; 16(1): 77, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174549

RESUMEN

BACKGROUND: Influenza B virus is a main causative pathogen of annual influenza epidemics, however, research on influenza B virus in general lags behind that on influenza A viruses, one of the important reasons is studies on influenza B viruses in animal models are limited. Here we investigated the tree shrew as a potential model for influenza B virus studies. METHODS: Tree shrews and ferrets were inoculated with either a Yamagata or Victoria lineage influenza B virus. Symptoms including nasal discharge and weight loss were observed. Nasal wash and respiratory tissues were collected at 2, 4 and 6 days post inoculation (DPI). Viral titers were measured in nasal washes and tissues were used for pathological examination and extraction of mRNA for measurement of cytokine expression. RESULTS: Clinical signs and pathological changes were also evident in the respiratory tracts of tree shrews and ferrets. Although nasal symptoms including sneezing and rhinorrhea were evident in ferrets infected with influenza B virus, tree shrews showed no significant respiratory symptoms, only milder nasal secretions appeared. Weight loss was observed in tree shrews but not ferrets. V0215 and Y12 replicated in all three animal (ferrets, tree shrews and mice) models with peak titers evident on 2DPI. There were no significant differences in peak viral titers in ferrets and tree shrews inoculated with Y12 at 2 and 4DPI, but viral titers were detected at 6DPI in tree shrews. Tree shrews infected with influenza B virus showed similar seroconversion and respiratory tract pathology to ferrets. Elevated levels of cytokines were detected in the tissues isolated from the respiratory tract after infection with either V0215 or Y12 compared to the levels in the uninfected control in both animals. Overall, the tree shrew was sensitive to infection and disease by influenza B virus. CONCLUSION: The tree shrew to be a promising model for influenza B virus research.


Asunto(s)
Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Virus de la Influenza B/inmunología , Infecciones por Orthomyxoviridae/inmunología , Tupaiidae/virología , Animales , Citocinas/inmunología , Femenino , Hurones , Virus de la Influenza B/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Nariz/virología , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Árboles , Carga Viral , Replicación Viral
12.
Proc Natl Acad Sci U S A ; 113(6): 1636-41, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811446

RESUMEN

Influenza pandemics require that a virus containing a hemagglutinin (HA) surface antigen previously unseen by a majority of the population becomes airborne-transmissible between humans. Although the HA protein is central to the emergence of a pandemic influenza virus, its required molecular properties for sustained transmission between humans are poorly defined. During virus entry, the HA protein binds receptors and is triggered by low pH in the endosome to cause membrane fusion; during egress, HA contributes to virus assembly and morphology. In 2009, a swine influenza virus (pH1N1) jumped to humans and spread globally. Here we link the pandemic potential of pH1N1 to its HA acid stability, or the pH at which this one-time-use nanomachine is either triggered to cause fusion or becomes inactivated in the absence of a target membrane. In surveillance isolates, our data show HA activation pH values decreased during the evolution of H1N1 from precursors in swine (pH 5.5-6.0), to early 2009 human cases (pH 5.5), and then to later human isolates (pH 5.2-5.4). A loss-of-function pH1N1 virus with a destabilizing HA1-Y17H mutation (pH 6.0) was less pathogenic in mice and ferrets, less transmissible by contact, and no longer airborne-transmissible. A ferret-adapted revertant (HA1-H17Y/HA2-R106K) regained airborne transmissibility by stabilizing HA to an activation pH of 5.3, similar to that of human-adapted isolates from late 2009-2014. Overall, these studies reveal that a stable HA (activation pH ≤ 5.5) is necessary for pH1N1 influenza virus pathogenicity and airborne transmissibility in ferrets and is associated with pandemic potential in humans.


Asunto(s)
Ácidos/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pandemias , Animales , Evolución Biológica , Hurones/virología , Humanos , Concentración de Iones de Hidrógeno , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Masculino , Ratones Endogámicos DBA , Mutación/genética , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Estabilidad Proteica , Porcinos , Activación Viral , Replicación Viral
13.
J Infect Dis ; 217(3): 438-442, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973317

RESUMEN

Pregnancy has been associated with severe influenza, an association highlighted during the 2009 pandemic of influenza A(H1N1) virus (A[H1N1]pdm09) infection. To assess the underlying mechanism, we infected pregnant and non-pregnant ferrets with A(H1N1) pdm09 virus. A(H1N1)pdm09-infected pregnant ferrets also had higher levels of inflammatory cytokines in their pulmonary tracts. Systemically, total CD8+ T cell counts and A(H1N1)pdm09-specific B-cell responses in blood were significantly lower in pregnant ferrets. This model predicts that the poorer outcome for pregnant women during the A(H1N1)pdm09 pandemic was due to an elevated level of viral replication and to a cytokine imbalance that led to a less effective immune response.


Asunto(s)
Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/patología , Complicaciones Infecciosas del Embarazo/patología , Células TH1/inmunología , Células Th2/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Hurones , Pulmón/patología , Pulmón/virología , Infecciones por Orthomyxoviridae/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología
14.
J Infect Dis ; 217(2): 245-256, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29112724

RESUMEN

Background: The immunologic factors underlying severe influenza are poorly understood. To address this, we compared the immune responses of influenza-confirmed hospitalized individuals with severe acute respiratory illness (SARI) to those of nonhospitalized individuals with influenza-like illness (ILI). Methods: Peripheral blood lymphocytes were collected from 27 patients with ILI and 27 with SARI, at time of enrollment and then 2 weeks later. Innate and adaptive cellular immune responses were assessed by flow cytometry, and serum cytokine levels were assessed by a bead-based assay. Results: During the acute phase, SARI was associated with significantly reduced numbers of circulating myeloid dendritic cells, CD192+ monocytes, and influenza virus-specific CD8+ and CD4+ T cells as compared to ILI. By the convalescent phase, however, most SARI cases displayed continued immune activation characterized by increased numbers of CD16+ monocytes and proliferating, and influenza virus-specific, CD8+ T cells as compared to ILI cases. SARI was also associated with reduced amounts of cytokines that regulate T-cell responses (ie, interleukin 4, interleukin 13, interleukin 12, interleukin 10, and tumor necrosis factor ß) and hematopoiesis (interleukin 3 and granulocyte-macrophage colony-stimulating factor) but increased amounts of a proinflammatory cytokine (tumor necrosis factor α), chemotactic cytokines (MDC, MCP-1, GRO, and fractalkine), and growth-promoting cytokines (PDGFBB/AA, VEGF, and EGF) as compared to ILI. Conclusions: Severe influenza cases showed a delay in the peripheral immune activation that likely led prolonged inflammation, compared with mild influenza cases.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Celular , Inmunidad Innata , Inflamación/inmunología , Inflamación/patología , Gripe Humana/inmunología , Gripe Humana/patología , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Citocinas/sangre , Células Dendríticas/inmunología , Femenino , Humanos , Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Adulto Joven
15.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27847354

RESUMEN

Neuraminidase (NA) is a sialidase expressed on the surface of influenza A viruses that releases progeny viruses from the surface of infected cells and prevents viruses becoming trapped in mucus. It is a homotetramer, with each monomer consisting of a transmembrane region, a stalk, and a globular head with sialidase activity. We recently characterized two swine viruses of the pandemic H1N1 lineage, A/swine/Virginia/1814-1/2012 (pH1N1low-1) and A/swine/Virginia/1814-2/2012 (pH1N1low-2), with almost undetectable NA enzymatic activity compared to that of the highly homologous A/swine/Pennsylvania/2436/2012 (pH1N1-1) and A/swine/Minnesota/2499/2012 (pH1N1-2) viruses. pH1N1-1 transmitted to aerosol contact ferrets, but pH1N1low-1 did not. The aim of this study was to identify the molecular determinants associated with low NA activity as potential markers of aerosol transmission. We identified the shared unique substitutions M19V, A232V, D248N, and I436V (N1 numbering) in pH1N1low-1 and pH1N1low-2. pH1N1low-1 also had the unique Y66D substitution in the stalk domain, where 66Y was highly conserved in N1 NAs. Restoration of 66Y was critical for the NA activity of pH1N1low-1 NA, although 19M or 248D in conjunction with 66Y was required to recover the level of activity to that of pH1N1 viruses. Studies of NA stability and molecular modeling revealed that 66Y likely stabilized the NA homotetramer. Therefore, 66Y in the stalk domain of N1 NA was critical for the stability of the NA tetramer and, subsequently, for NA enzymatic activity. IMPORTANCE: Neuraminidase (NA) is a sialidase that is one of the major surface glycoproteins of influenza A viruses and the target for the influenza drugs oseltamivir and zanamivir. NA is important as it releases progeny viruses from the surface of infected cells and prevents viruses becoming trapped in mucus. Mutations in the globular head domain that decrease enzymatic activity but confer resistance to NA inhibitors have been characterized; however, the importance of specific mutations in the stalk domain is unknown. We identified 66Y (N1 numbering), a highly conserved amino acid that was critical for the stability of the NA tetramer and, subsequently, for NA enzymatic activity.


Asunto(s)
Aminoácidos/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Dominios Proteicos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Aminoácidos/química , Animales , Línea Celular , Perros , Activación Enzimática , Estabilidad de Enzimas , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Modelos Moleculares , Mutación , Tasa de Mutación , Neuraminidasa/química , Conformación Proteica , Relación Estructura-Actividad , Proteínas Virales/química , Replicación Viral
16.
Arch Virol ; 163(5): 1153-1162, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29368065

RESUMEN

Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Animales Salvajes , Aves/virología , Bronquios/citología , Bronquios/virología , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/patogenicidad , Receptores Virales/metabolismo , República de Corea , Acoplamiento Viral , Replicación Viral
17.
J Virol ; 89(21): 10891-900, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292325

RESUMEN

UNLABELLED: Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. IMPORTANCE: The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only numerous NAI-resistant substitutions previously reported in other NA subtypes but also several novel changes conferring reduced susceptibility to NAIs, which are subtype specific. The findings indicate that some resistance markers are common across NA subtypes, but other markers need to be determined empirically for each subtype. The study also implies that antiviral surveillance monitoring could play a critical role in the clinical management of influenza virus infection and an essential component of pandemic preparedness.


Asunto(s)
Resistencia a Medicamentos/genética , Inhibidores Enzimáticos/farmacología , Marcadores Genéticos/genética , Virus de la Influenza A/genética , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Animales , Perros , Ingeniería Genética , Humanos , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Mutagénesis , Neuraminidasa/química , Especificidad de la Especie , Ensayo de Placa Viral
18.
J Virol ; 89(11): 5935-48, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810540

RESUMEN

UNLABELLED: A balance between the functions of the influenza virus surface proteins hemagglutinin (HA) and neuraminidase (NA) is thought to be important for the transmission of viruses between humans. Here we describe two pandemic H1N1 viruses, A/swine/Virginia/1814-1/2012 and A/swine/Virginia/1814-2/2012 (pH1N1low-1 and -2, respectively), that were isolated from swine symptomatic for influenza. The enzymatic activity of the NA of these viruses was almost undetectable, while the HA binding affinity for α2,6 sialic acids was greater than that of the highly homologous pH1N1 viruses A/swine/Pennsylvania/2436/2012 and A/swine/Minnesota/2499/2012 (pH1N1-1 and -2), which exhibited better-balanced HA and NA activities. The in vitro growth kinetics of pH1N1low and pH1N1 viruses were similar, but aerosol transmission of pH1N1low-1 was abrogated and transmission via direct contact in ferrets was significantly impaired compared to pH1N1-1, which transmitted by direct and aerosol contact. In normal human bronchial epithelial cells, pH1N1low-1 was significantly inhibited by mucus but pH1N1-1 was not. In Madin-Darby canine kidney cell cultures overlaid with human or swine mucus, human mucus inhibited pH1N1low-1 but swine mucus did not. These data show that the interaction between viruses and mucus may be an important factor in viral transmissibility and could be a barrier for interspecies transmission between humans and swine for influenza viruses. IMPORTANCE: A balance between the functions of the influenza virus surface proteins hemagglutinin (HA) and neuraminidase (NA) is thought to be important for transmission of viruses from swine to humans. Here we show that a swine virus with extremely functionally mismatched HA and NAs (pH1N1low-1) cannot transmit via aerosol in ferrets, while another highly homologous virus with HA and NAs that are better matched functionally (pH1N1-1) can transmit via aerosol. These viruses show similar growth kinetics in Madin-Darby canine kidney (MDCK) cells, but pH1N1low-1 is significantly inhibited by mucus in normal human bronchial epithelial cells whereas pH1N1-1 is not. Further, human mucus could inhibit these viruses, but swine mucus could not. These data show that the interaction between viruses and mucus may be an important factor in viral transmissibility and could be a species barrier between humans and swine for influenza viruses.


Asunto(s)
Aerosoles , Subtipo H1N1 del Virus de la Influenza A/enzimología , Viabilidad Microbiana , Moco/virología , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Proteínas Virales/metabolismo , Animales , Línea Celular , Perros , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología
19.
J Virol ; 89(8): 4549-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673719

RESUMEN

UNLABELLED: Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and continue to be a pandemic threat. While vaccines are available, other approaches are required for patients that typically respond poorly to vaccination, such as the elderly and the immunocompromised. To produce a therapeutic agent that is highly efficacious at low doses and is broadly specific against antigenically drifted H5N1 influenza viruses, we developed two neutralizing monoclonal antibodies and combined them into a single bispecific Fc fusion protein (the Fc dual-affinity retargeting [FcDART] molecule). In mice, a single therapeutic or prophylactic dose of either monoclonal antibody at 2.5 mg/kg of body weight provided 100% protection against challenge with A/Vietnam/1203/04 (H5N1) or the antigenically drifted strain A/Whooper swan/Mongolia/244/05 (H5N1). In ferrets, a single 1-mg/kg prophylactic dose provided 100% protection against A/Vietnam/1203/04 challenge. FcDART was also effective, as a single 2.5-mg/kg therapeutic or prophylactic dose in mice provided 100% protection against A/Vietnam/1203/04 challenge. Antibodies bound to conformational epitopes in antigenic sites on the globular head of the hemagglutinin protein, on the basis of analysis of mutants with antibody escape mutations. While it was possible to generate escape mutants in vitro, they were neutralized by the antibodies in vivo, as mice infected with escape mutants were 100% protected after only a single therapeutic dose of the antibody used to generate the escape mutant in vitro. In summary, we have combined the antigen specificities of two highly efficacious anti-H5N1 influenza virus antibodies into a bispecific FcDART molecule, which represents a strategy to produce broadly neutralizing antibodies that are effective against antigenically diverse influenza viruses. IMPORTANCE: Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and are a pandemic threat. A vaccine is available, but other approaches are required for patients that typically respond poorly to vaccination, such as the elderly and the immunocompromised. The variability of the virus means that such an approach must be broad spectrum. To achieve this, we developed two antibodies that neutralize H5N1 influenza viruses. In mice, these antibodies provided complete protection against a spectrum of H5N1 influenza viruses at a single low dose. We then combined the two antibodies into a single molecule, FcDART, which combined the broad-spectrum activity and protective efficacy of both antibodies. This treatment provides a novel and effective therapeutic agent or prophylactic with activity against highly pathogenic H5N1 avian influenza viruses.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Células CHO , Cricetinae , Cricetulus , Perros , Hurones , Técnica del Anticuerpo Fluorescente , Células HEK293 , Pruebas de Inhibición de Hemaglutinación , Humanos , Células de Riñón Canino Madin Darby , Ratones , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología
20.
J Infect Dis ; 212(4): 542-51, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25712975

RESUMEN

BACKGROUND: An effective vaccine is urgently needed against the H7N9 avian influenza virus. We evaluated the immunogenicity and protective efficacy of a split-virion H7N9 vaccine with or without the oil-in-water adjuvants in ferrets. METHODS: Ferrets were vaccinated with 2 doses of unadjuvanted, MF59 or AS03-adjuvanted A/Shanghai/2/2013 (H7N9) vaccine, and the induction of antibodies to hemagglutinin (HA) or neuraminidase proteins was evaluated. Ferrets were then challenged with wild-type H7N9 virus to assess the vaccine's protective efficacy. The vaccine composition and integrity was also evaluated in vitro. RESULTS: Adjuvanted vaccines stimulated robust serum antibody titers against HA and neuraminidase compared with the unadjuvanted vaccines. Although there was a difference in adjuvanticity between AS03 and MF59 at a lower dose (3.75 µg of HA), both adjuvants induced comparable antibody responses after 2 doses of 15 µg. On challenge, ferrets that received adjuvanted vaccines showed lower viral burden than the control or unadjuvanted vaccine group. In vitro examinations revealed that the vaccine contained visible split-virus particles and retained the native conformation of HA recognizable by polyclonal and monoclonal antibodies. CONCLUSIONS: The adjuvanted H7N9 vaccines demonstrated superior immunogenicity and protective efficacy against H7N9 infection in ferrets and hold potential as a vaccination regimen.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Polisorbatos/farmacología , Escualeno/farmacología , alfa-Tocoferol/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Relación Dosis-Respuesta Inmunológica , Combinación de Medicamentos , Hurones , Masculino , Polisorbatos/administración & dosificación , Organismos Libres de Patógenos Específicos , Escualeno/administración & dosificación , alfa-Tocoferol/administración & dosificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda