RESUMEN
A stylized macro-scale energy model of least-cost electricity systems relying only on wind and solar generation was used to assess the value of different storage technologies, individually and combined, for the contiguous U.S. as well as for four geographically diverse U.S. load-balancing regions. For the contiguous U.S. system, at current costs, when only one storage technology was deployed, hydrogen energy storage produced the lowest system costs, due to its energy-capacity costs being the lowest of all storage technologies modeled. Additional hypothetical storage technologies were more cost-competitive than hydrogen (long-duration storage) only at very low energy-capacity costs, but they were more cost-competitive than Li-ion batteries (short-duration storage) at relatively high energy- and power-capacity costs. In all load-balancing regions investigated, the least-cost systems that included long-duration storage had sufficient energy and power capacity to also meet short-duration energy and power storage needs, so that the addition of short-duration storage as a second storage technology did not markedly reduce total system costs. Thus, in electricity systems that rely on wind and solar generation, contingent on social and geographic constraints, long-duration storage may cost-effectively provide the services that would otherwise be provided by shorter-duration storage technologies.