RESUMEN
Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.
Asunto(s)
Fósiles , Filogenia , Animales , Arañas/clasificación , Arañas/genéticaRESUMEN
Abdominal pain is a cardinal symptom of inflammatory bowel disease (IBD). Transient receptor potential (TRP) channels contribute to abdominal pain in preclinical models of IBD, and TRP melastatin 3 (TRPM3) has recently been implicated in inflammatory bladder and joint pain in rodents. We hypothesized that TRPM3 is involved in colonic sensation and is sensitized during colitis. We used immunohistochemistry, ratiometric Ca2+ imaging, and colonic afferent nerve recordings in mice to evaluate TRPM3 protein expression in colon-projecting dorsal root ganglion (DRG) neurons, as well as functional activity in DRG neurons and colonic afferent nerves. Colitis was induced using dextran sulfate sodium (DSS) in drinking water. TRPM3 protein expression was observed in 76% of colon-projecting DRG neurons and was often colocalized with calcitonin gene-related peptide. The magnitudes of intracellular Ca2+ transients in DRG neurons in response to the TRPM3 agonists CIM-0216 and pregnenolone sulfate sodium were significantly greater in neurons from mice with colitis compared with controls. In addition, the percentage of DRG neurons from mice with colitis that responded to CIM-0216 was significantly increased. CIM-0216 also increased the firing rate of colonic afferent nerves from control and mice with colitis. The TRPM3 inhibitor isosakuranetin inhibited the mechanosensitive response to distension of wide dynamic range afferent nerve units from mice with colitis but had no effect in control mice. Thus, TRPM3 contributes to colonic sensory transduction and may be a potential target for treating pain in IBD.NEW & NOTEWORTHY This is the first study to characterize TRPM3 protein expression and function in colon-projecting DRG neurons. A TRPM3 agonist excited DRG neurons and colonic afferent nerves from healthy mice. TRPM3 agonist responses in DRG neurons were elevated during colitis. Inhibiting TRPM3 reduced the firing of wide dynamic range afferent nerves from mice with colitis but had no effect in control mice.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Canales Catiónicos TRPM , Ratones , Animales , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas/metabolismo , Ganglios Espinales , Colon/inervación , Dolor Abdominal , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismoRESUMEN
Burmese amber is a significant source of fossils that documents the mid-Cretaceous biota. This deposit was formed around 99 Ma on the Burma Terrane, which broke away from Gondwana and later collided with Asia, although the timing is disputed. Palpimanoidea is a dispersal-limited group that was a dominant element of the Mesozoic spider fauna, and has an extensive fossil record, particularly from Burmese amber. Using morphological and molecular data, evolutionary relationships of living and fossil Palpimanoidea are examined. Divergence dating with fossils as terminal tips shows timing of diversification is contemporaneous with continental breakup.Ancestral range estimations show widespread ancestral ranges that divide into lineages that inherit different Pangean fragments, consistent with vicariance. Our results suggest that the Burmese amber fauna has ties to Gondwana due to a historical connection in the Early Cretaceous, and that the Burma Terrane facilitated biotic exchange by transporting lineages from Gondwana into the Holarctic in the Cretaceous.
Asunto(s)
Ámbar , Arañas , Animales , Filogenia , Mianmar , Evolución Biológica , Fósiles , Arañas/genéticaRESUMEN
The miniature orb weaving spiders (symphytognathoids) are a group of small spiders (<2 mm), including the smallest adult spider Patu digua (0.37 mm in body length), that have been classified into five families. The species of one of its constituent lineages, the family Anapidae, build a remarkable diversity of webs (ranging from orbs to sheet webs and irregular tangles) and even include a webless kleptoparasitic species. Anapids are also exceptional because of the extraordinary diversity of their respiratory systems. The phylogenetic relationships of symphytognathoid families have been recalcitrant with different classes of data, such as, monophyletic with morphology and its concatenation with Sanger-based six markers, paraphyletic (including a paraphyletic Anapidae) with solely Sanger-based six markers, and polyphyletic with transcriptomes. In this study, we capitalized on a large taxonomic sampling of symphytognathoids, focusing on Anapidae, and using de novo sequenced ultraconserved elements (UCEs) combined with UCEs recovered from available transcriptomes and genomes. We evaluated the conflicting relationships using a variety of support metrics and topology tests. We found support for the phylogenetic hypothesis proposed using morphology to obtain the "symphytognathoids'' clade, Anterior Tracheal System (ANTS) Clade and monophyly of the family Anapidae. Anapidae can be divided into three major lineages, the Vichitra Clade (including Teutoniella, Holarchaea, Sofanapis and Acrobleps), the subfamily Micropholcommatinae and the Orb-weaving anapids (Owa) Clade. Biogeographic analyses reconstructed a hypothesis of multiple long-distance transoceanic dispersal events, potentially influenced by the Antarctic Circumpolar Current and West Wind Drift. In symphytognathoids, the ancestral anterior tracheal system transformed to book lungs four times and reduced book lungs five times. The posterior tracheal system was lost six times. The orb web structure was lost four times independently and transformed into sheet web once.
Asunto(s)
Arañas , Animales , Filogenia , Genoma , Transcriptoma , Sistema RespiratorioRESUMEN
In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy-marker-based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter-relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher-level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger-based markers with newly generated and publicly available genome-scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.
Asunto(s)
Arañas , Humanos , Animales , Arañas/genética , Filogenia , Genómica , Análisis de Secuencia de ADN , GenomaRESUMEN
The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning organs and aerial webs originating with the evolution of the megadiverse "true spiders" (Araneomorphae). The base of the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider web evolution; ultraconserved elements.].
Asunto(s)
Arañas , Animales , Teorema de Bayes , Filogenia , Sistema Respiratorio , Seda/genética , Arañas/genéticaRESUMEN
Mecysmaucheniidae spiders have evolved ultra-fast cheliceral strikes 4 times independently. The mechanism for producing these high-speed strikes is likely due to a latch/spring system that allows for stored energy to be rapidly released. This study examined two different sister lineages: Zearchaea has ultra-fast cheliceral strikes and Aotearoa, based on external morphology of the clypeus, is hypothesized to have slower strikes. Using high-speed videography, I first gathered kinematic data on each taxon. Then, using histology and data from micro-computed tomography scanning, I examined internal cheliceral muscle morphology to test whether shifts in muscle anatomy correspond to performance differences in cheliceral strike. Results from high-speed video analysis revealed that Zearchaea achieves peak angular velocities of 25.0×103±4.8×103 rad s-1 (mean±s.d.) in durations of 0.0843±0.017â ms. The fastest recorded strike had a peak angular and linear velocity of 30.8×103 rad s-1 and 18.2â mâ s-1, respectively. The slower striking sister species, Aotearoa magna, was three orders of magnitude slower in velocity and longer in duration. Histology revealed sarcomere length differences, with some muscles optimized for force, and other muscles for speed. 3D printed models revealed structural differences that explain how the chelicerae hinge open and close. Combining all of this evidence, I put forth a hypothesis for the ultra-fast trap-jaw mechanism. This research documents the morphological shifts that accompany ultra-fast movements that result in increased rotation in joints and increased muscle specialization.
Asunto(s)
Movimiento , Arañas , Animales , Fenómenos Biomecánicos , Músculos , Microtomografía por Rayos XRESUMEN
Historical museum specimens are invaluable for morphological and taxonomic research, but typically the DNA is degraded making traditional sequencing techniques difficult to impossible for many specimens. Recent advances in Next-Generation Sequencing, specifically target capture, makes use of short fragment sizes typical of degraded DNA, opening up the possibilities for gathering genomic data from museum specimens. This study uses museum specimens and recent target capture sequencing techniques to sequence both Ultra-Conserved Elements (UCE) and exonic regions for lineages that span the modern spiders, Araneomorphae, with a focus on Palpimanoidea. While many previous studies have used target capture techniques on dried museum specimens (for example, skins, pinned insects), this study includes specimens that were collected over the last two decades and stored in 70% ethanol at room temperature. Our findings support the utility of target capture methods for examining deep relationships within Araneomorphae: sequences from both UCE and exonic loci were important for resolving relationships; a monophyletic Palpimanoidea was recovered in many analyses and there was strong support for family and generic-level palpimanoid relationships. Ancestral character state reconstructions reveal that the highly modified carapace observed in mecysmaucheniids and archaeids has evolved independently.
Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Museos , Filogenia , Arañas/genética , Animales , ADN/genética , Genoma , Funciones de VerosimilitudRESUMEN
We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S, COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher-level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb-weavers, compatible with their non-monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius, Tasmabrochus and Teeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to include Calymmaria, Cryphoeca, Ethobuella and Willisius (transferred from Hahniidae), and Blabomma and Yorima (transferred from Dictynidae). Cycloctenidae are redefined to include Orepukia (transferred from Agelenidae) and Pakeha and Paravoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, with Amphinecta, Mamoea, Maniho, Paramamoea and Rangitata (transferred from Amphinectidae); Ischaleinae, with Bakala and Manjala (transferred from Amaurobiidae) and Ischalea (transferred from Stiphidiidae); Metaltellinae, with Austmusia, Buyina, Calacadia, Cunnawarra, Jalkaraburra, Keera, Magua, Metaltella, Penaoola and Quemusia; Porteriinae (new rank), with Baiami, Cambridgea, Corasoides and Nanocambridgea (transferred from Stiphidiidae); and Desinae, with Desis, and provisionally Poaka (transferred from Amaurobiidae) and Barahna (transferred from Stiphidiidae). Argyroneta is transferred from Cybaeidae to Dictynidae. Cicurina is transferred from Dictynidae to Hahniidae. The genera Neoramia (from Agelenidae) and Aorangia, Marplesia and Neolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, with Gasparia, Gohia, Hulua, Neomyro, Myro, Ommatauxesis and Otagoa (transferred from Desidae); and Toxopinae, with Midgee and Jamara, formerly Midgeeinae, new syn. (transferred from Amaurobiidae) and Hapona, Laestrygones, Lamina, Toxops and Toxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the "ctenids" Ancylometes and Cupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae. Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae (new fam., including Xenoctenus, Paravulsor and Odo, transferred from Miturgidae, as well as Incasoctenus from Ctenidae). We confirm the inclusion of Zora (formerly Zoridae) within Miturgidae.
RESUMEN
BACKGROUND & AIMS: Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS: In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 µg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS: Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 µmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS: Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.
Asunto(s)
Disbiosis , Ganglios Espinales , Microbioma Gastrointestinal , Vancomicina , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Vancomicina/farmacología , Disbiosis/microbiología , Masculino , Receptor PAR-2/metabolismo , Péptido Hidrolasas/metabolismo , Dolor Abdominal/microbiología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Hiperalgesia/microbiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Dolor Visceral/microbiología , Antibacterianos/farmacologíaRESUMEN
The arachnid order Schizomida is a relatively understudied group of soil-dwelling predators found on all continents except Antarctica. While efforts to understand their biology are growing, there is still much to know about them. A curious aspect of their morphology is the male flagellum, a sexually dimorphic, tail-like structure which differs in shape across the order and functions in their courtship rituals. The flagellar shape is important for taxonomic classification, yet few efforts have been made to examine shape diversity across the group. Using elliptical Fourier analysis, a type of geometric morphometrics based on shape outline, we quantified shape differences across a combined nearly 550 outlines in the dorsal and lateral views, categorizing them based on genus, family, biogeographic realm, and habitat, with special emphasis on Caribbean and Cuban fauna. We tested for allometric relationships, differences in disparity based on locations and sizes in morphospace among these categories, and for clusters of shapes in morphospace. We found multiple differences in all categories despite apparent overlaps in morphospace, evolutionary allometry, and evidence for discrete clusters in some flagellum shapes. This study can serve as a foundation for further study on the evolution, diversification, and taxonomic utility of the male flagellum.
Asunto(s)
Ecosistema , Suelo , Evolución Biológica , Flagelos , Análisis de Fourier , Humanos , Masculino , FilogeniaRESUMEN
The predatory strike of dragonfly larvae can inspire the design of fast robotic movement with enhanced control and precision.
Asunto(s)
Odonata , Animales , Larva , Conducta PredatoriaRESUMEN
The first fossil Archaeidae in Cambay amber from India, of Eocene age, is documented. The inclusion is a spider exuvium and is placed as Myrmecarchaea based on the presence of elongated legs, a slightly elongated pedicel with lateral spurs, and a diastema between coxae III and IV that is similar to M.antecessor from Oise amber. The previous occurrences of the genus are from Baltic and Oise amber, both of Eocene age. Because most spiders, including Archaeidae, only molt as juveniles, the exuvium does not have adult features nor have distinct species-specific features, and a new taxon is not erected. This new record further extends the distribution of the family and genus to India 50-52 million years ago. Myrmecarchaea in Indian Cambay amber provides additional evidence that India in the Early Eocene had affinities with the Palearctic mainland rather than showing Gondwanan insularity.
RESUMEN
Brain herniation into a dural venous sinus is a rare entity of unknown clinical significance without a clear relationship to raised intracranial pressure. There are yet to be detailed reports of interventional neuroradiology procedures involving sinus stenting across brain herniations. The authors of this paper present the first case of a stent placed across a large brain herniation into the transverse sinus in a patient with a tectal plate lesion and features of chronically raised intracranial pressure. This case demonstrates objective resolution of papilloedema and venous sinus pressure gradient at six months without complication.
Asunto(s)
Papiledema , Seudotumor Cerebral , Encéfalo , Senos Craneales/diagnóstico por imagen , Senos Craneales/cirugía , Humanos , Papiledema/diagnóstico por imagen , Papiledema/etiología , Estudios Retrospectivos , Stents , Resultado del TratamientoRESUMEN
To capture prey otherwise unattainable by muscle function alone, some animal lineages have evolved movements that are driven by stored elastic energy, producing movements of remarkable speed and force. One such example that has evolved multiple times is a trap-jaw mechanism, in which the mouthparts of an animal are loaded with energy as they open to a wide gape and then, when triggered to close, produce a terrific force. Within the spiders (Araneae), this type of attack has thus far solely been documented in the palpimanoid family Mecysmaucheniidae but a similar morphology has also been observed in the distantly related araneoid subfamily Pararchaeinae, leading to speculation of a trap-jaw attack in that lineage as well. Here, using high-speed videography, we test whether cheliceral strike power output suggests elastic-driven movements in the pararchaeine Pararchaea alba. The strike speed attained places P. alba as a moderately fast striker exceeding the slowest mecysmaucheniids, but failing to the reach the most extreme high-speed strikers that have elastic-driven mechanisms. Using microcomputed tomography, we compare the morphology of P. alba chelicerae in the resting and open positions, and their related musculature, and based on results propose a mechanism for cheliceral strike function that includes a torque reversal latching mechanism. Similar to the distantly related trap-jaw mecysmaucheniid spiders, the unusual prosoma morphology in P. alba seemingly allows for highly maneuverable chelicerae with a much wider gape than typical spiders, suggesting that increasingly maneuverable joints coupled with a latching mechanism may serve as a precursor to elastic-driven movements.
RESUMEN
BACKGROUND: A striking aspect of evolution is that it often converges on similar trajectories. Evolutionary convergence can occur in deep time or over short time scales, and is associated with the imposition of similar selective pressures. Repeated convergent events provide a framework to infer the genetic basis of adaptive traits. The current study examines the genetic basis of secondary web loss within web-building spiders (Araneoidea). Specifically, we use a lineage of spiders in the genus Tetragnatha (Tetragnathidae) that has diverged into two clades associated with the relatively recent (5 mya) colonization of, and subsequent adaptive radiation within, the Hawaiian Islands. One clade has adopted a cursorial lifestyle, and the other has retained the ancestral behavior of capturing prey with sticky orb webs. We explore how these behavioral phenotypes are reflected in the morphology of the spinning apparatus and internal silk glands, and the expression of silk genes. Several sister families to the Tetragnathidae have undergone similar web loss, so we also ask whether convergent patterns of selection can be detected in these lineages. RESULTS: The cursorial clade has lost spigots associated with the sticky spiral of the orb web. This appears to have been accompanied by loss of silk glands themselves. We generated phylogenies of silk proteins (spidroins), which showed that the transcriptomes of cursorial Tetragnatha contain all major spidroins except for flagelliform. We also found an uncharacterized spidroin that has higher expression in cursorial species. We found evidence for convergent selection acting on this spidroin, as well as genes involved in protein metabolism, in the cursorial Tetragnatha and divergent cursorial lineages in the families Malkaridae and Mimetidae. CONCLUSIONS: Our results provide strong evidence that independent web loss events and the associated adoption of a cursorial lifestyle are based on similar genetic mechanisms. Many genes we identified as having evolved convergently are associated with protein synthesis, degradation, and processing, which are processes that play important roles in silk production. This study demonstrates, in the case of independent evolution of web loss, that similar selective pressures act on many of the same genes to produce the same phenotypes and behaviors.
Asunto(s)
Arañas , Animales , Evolución Biológica , Hawaii , Filogenia , Seda/genética , Arañas/genéticaRESUMEN
Spiders are important predators in terrestrial ecosystems, yet we know very little about the principal feeding structures of spiders, the chelicerae, which are functionally equivalent to "jaws" or "mandibles" and are an extremely important aspect of spider biology. In particular, members of Palpimanoidea have evolved highly unusual cheliceral morphologies and functions, including high-speed, ballistic movements in mecysmaucheniid spiders, the fastest arachnid movements known thus far, and the elongated, highly maneuverable chelicerae of archaeids that use an attack-at-a-distance strategy. Here, using micro-Computed-Tomography scanning techniques, we perform a comparative study to examine cheliceral muscle morphology in six different spider specimens representing five palpimanoid families. We provide a hypothesis for homology in palpimanoid cheliceral muscles and then compare and contrast these findings with previous studies on other non-palpimanoid spiders. We document and discuss two sets of cheliceral muscles in palpimanoids that have not been previously observed in other spiders or which may represent a position shift compared to other spiders. In the palpimanoids, Palpimanus sp., Huttonia sp., and Colopea sp. showed similar cheliceral muscle anatomy. In Eriauchenius ranavalona, which has highly maneuverable chelicerae, some of the muscles have a more horizontal orientation, and there is a greater degree of cheliceral muscle divergence. In Zearchaea sp. and Aotearoa magna, some muscles have also shifted to a more horizontal orientation, and in Zearchaea sp., a species with a ballistic, high-speed predatory strike, there is a loss of cheliceral muscles. This research is a first step toward understanding cheliceral form and function across spiders.
Asunto(s)
Músculos/anatomía & histología , Músculos/diagnóstico por imagen , Arañas/anatomía & histología , Microtomografía por Rayos X , Animales , Femenino , Imagenología Tridimensional , MasculinoRESUMEN
An endemic genus of Madagascan spiders (Araneae, Archaeidae, Eriauchenius) is revised. All 20 species of Eriauchenius are described and keyed, of which 14 are new species: Eriauchenius andriamanelosp. n., Eriauchenius andrianampoinimerinasp. n., Eriauchenius goodmanisp. n., Eriauchenius harveyisp. n., Eriauchenius lukemacaulayisp. n., Eriauchenius milajaneaesp. n., Eriauchenius millotisp. n., Eriauchenius rafohysp. n., Eriauchenius ranavalonasp. n., Eriauchenius rangitasp. n., Eriauchenius rixisp. n., Eriauchenius samasp. n., Eriauchenius wunderlichisp. n., Eriauchenius zirafysp. n. Additionally, six species of the new genus Madagascarchaeagen. n. are described and keyed, of which four are new species: Madagascarchaea fohysp. n., Madagascarchaea lotzisp. n., Madagascarchaea moramorasp. n., Madagascarchaea rabesahalasp. n. Diagnostic characters for the Madagascan and African genera are described, and based on these characters and previous phylogenetic analyses the following species transfers are proposed: Eriauchenius cornutus (Lotz, 2003) to Afrarchaea; Afrarchaea fisheri (Lotz, 2003) and Afrarchaea mahariraensis (Lotz, 2003) to Eriauchenius. Finally, we propose that the distribution of Afrarchaea be restricted to South Africa. While several Madagascan specimens have previously been identified as Afrarchaea godfreyi (Hewitt, 1919), we argue that these are likely misidentifications that should instead be Eriauchenius.
RESUMEN
Small animals possess intriguing morphological and behavioral traits that allow them to capture prey, including innovative structural mechanisms that produce ballistic movements by amplifying power [1-6]. Power amplification occurs when an organism produces a relatively high power output by releasing slowly stored energy almost instantaneously, resulting in movements that surpass the maximal power output of muscles [7]. For example, trap-jaw, power-amplified mechanisms have been described for several ant genera [5, 8], which have evolved some of the fastest known movements in the animal kingdom [6]. However, power-amplified predatory strikes were not previously known in one of the largest animal classes, the arachnids. Mecysmaucheniidae spiders, which occur only in New Zealand and southern South America, are tiny, cryptic, ground-dwelling spiders that rely on hunting rather than web-building to capture prey [9]. Analysis of high-speed video revealed that power-amplified mechanisms occur in some mecysmaucheniid species, with the fastest species being two orders of magnitude faster than the slowest species. Molecular phylogenetic analysis revealed that power-amplified cheliceral strikes have evolved four times independently within the family. Furthermore, we identified morphological innovations that directly relate to cheliceral function: a highly modified carapace in which the cheliceral muscles are oriented horizontally; modification of a cheliceral sclerite to have muscle attachments; and, in the power-amplified species, a thicker clypeus and clypeal apodemes. These structural innovations may have set the stage for the parallel evolution of ballistic predatory strikes.
Asunto(s)
Arañas/fisiología , Animales , Fenómenos Biomecánicos , Evolución Molecular , Movimiento , Músculo Esquelético/fisiología , Filogenia , Conducta Predatoria , Arañas/genéticaRESUMEN
Although Madagascar is an ancient fragment of Gondwana, the majority of taxa studied thus far appear to have reached the island through dispersal from Cenozoic times. Ancient lineages may have experienced a different history compared to more recent Cenozoic arrivals, as such lineages would have encountered geoclimatic shifts over an extended time period. The motivation for this study was to unravel the signature of diversification in an ancient lineage by comparing an area known for major geoclimatic upheavals (Madagascar) versus other areas where the environment has been relatively stable. Archaeid spiders are an ancient paleoendemic group with unusual predatory behaviors and spectacular trophic morphology that likely have been on Madagascar since its isolation. We examined disparities between Madagascan archaeids and their non-Madagascan relatives regarding timing of divergence, rates of trait evolution, and distribution patterns. Results reveal an increased rate of adaptive trait diversification in Madagascan archaeids. Furthermore, geoclimatic events in Madagascar over long periods of time may have facilitated high species richness due to montane refugia and stability, rainforest refugia, and also ecogeographic shifts, allowing for the accumulation of adaptive traits. This research suggests that time alone, coupled with more ancient geoclimatic events allowed for the different patterns in Madagascar.