RESUMEN
A novel iodine-promoted difunctionalization of α-C sites in enaminones was demonstrated as a means of synthesizing a variety of fully substituted thiazoles by constructing C-C(CO), C-S, and C-N bonds. This transformation allows the realization of enaminones as unusual aryl C2 synthons and simultaneously allows the thioylation and dicarbonylation of α-C sites. A preliminary mechanistic study was performed and indicated that the cleavage of CâC bonds in enaminones involves a bicyclization/ring-opening and oxidative coupling sequence.
RESUMEN
Defluorinative cyclization of CF3-alkenes has emerged as a reliable strategy for crafting intricate polycyclic frameworks. In this study, a facile defluorinative bicyclization approach was developed for the construction of 4H,5H-pyrano[3,2-c]chromenes under mild conditions involving a sequence of intramolecular cyclization and intermolecular defluoroheterocyclization. A variety of polysubstituted 4H,5H-pyrano[3,2-c]chromenes featuring C2-fluorine could be synthesized in good yields with excellent tolerance toward various functional groups. Moreover, the introduction of a C-F bond provides additional possibilities for further modification of this skeleton. The product features aggregation-induced emission (AIE) characteristics after simple modification, which is promising for chemical and biomedical imaging.
RESUMEN
A cascade oxidation/Pictet-Spengler condensation/annulation process has been developed for the one-pot total synthesis of nitramarine, nitraridine, and their analogues. The procedure proceeded with easily available quinolines and tryptophan derivatives. A simple and metal-free approach, wide substrate scope, and functional group tolerance make it applicable for the synthesis of diverse bioactive nitramarine, nitraridine, and their derivatives. Furthermore, the bioactivity evaluation has identified two promising leading compounds 5d and 5e with potent antitumor proliferative activity against breast cancer cells.
Asunto(s)
Productos Biológicos , Oxidación-Reducción , Productos Biológicos/síntesis química , Productos Biológicos/química , Humanos , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Quinolinas/química , Quinolinas/síntesis química , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
An efficient synthetic method for constructing 2,3- and 2,4-disubstituted pyrimidio[1,2-b]indazole skeletons through I2-DMSO-mediated and substrate-controlled regioselective [4 + 2] cyclization is reported. The reaction conditions are mild, its operation is simple, and the substrate scope is wide. More than 60 pyrimidio[1,2-b]indazole derivatives have been synthesized, providing a new methodology for constructing related molecules and potentially enriching bioactive-molecule libraries.
RESUMEN
A facile one-pot synthetic method has been developed for constructing 6-oxa-spiro[4.5]decane skeletons by merging the ring-opening of benzo[c]oxepines and formal 1,2-oxygen migration reactions. More than 30 examples of the 6-oxa-spiro[4.5]decane derivatives have been synthesized under transition-metal-free conditions.
RESUMEN
In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products. Mechanistic studies revealed that copper nitrate might be converted into a NO2 radical or the NO2 radical dimeric forms as an ion-pair equivalent to participate in the transformation.
RESUMEN
An iodine-mediated cyclization has been developed to 4-aryl-NH-1,2,3-triazoles, with p-toluenesulfonyl hydrazide and sulfamic acid used as nitrogen sources. Sulfamic acid plays a crucial role in this reaction by both acting as a substrate and providing an acidic environment. This reaction offers a metal- and azide-free strategy to access NH-1,2,3-triazoles.
RESUMEN
An I2-DMSO-mediated multicomponent [3+1+2] cascade annulation reaction using aryl methyl ketones, enaminones, and benzo[d]isoxazol-3-amine as substrates has been developed. This metal-free reaction involved the transannulation of benzo[d]isoxazol-3-amines with the formation of two C-N bonds and a C-C bond in one pot. Notably, a pyrimidine ring with a 1,4-dicarbonyl scaffold could efficiently transform into a pyrimido[4,5-d]pyridazine skeleton. The phenolic hydroxyl group of the target product could undergo further modification with pharmaceuticals, demonstrating the utility of this method.
RESUMEN
A transition-metal-free formal (4 + 2) cycloaddition for the direct assembly of acridone derivatives has been developed from simple and easily accessible o-aminobenzamides and 2-(trimethylsilyl)aryl triflates. The base played an important role in the selective controlled synthesis of N-H and N-aryl acridones. A preliminary study on the fluorescence properties of N-aryl acridones demonstrated that they could be used as fluorescent materials with a broad emission range.
RESUMEN
A novel multicomponent cascade cyclization reaction in one pot for the preparation of pyrido[3,2-a]phenoxazin-5-ones from simple o-aminophenols, paraformaldehyde, and enaminones has been established. It is noteworthy that o-aminophenol plays multiple roles serving as both a bis-nucleophile and an iminoquinone precursor, which can in situ generate aminophenoxazinones to undergo the Povarov reaction for the first time to yield pyrido[3,2-a]phenoxazin-5-ones with a high efficiency. Moreover, the photoluminescence of pyrido[3,2-a]phenoxazin-5-ones has polarity sensitivity and features aggregation-induced emission (AIE) characteristics, which is promising for bioimaging and theranostic applications.
RESUMEN
2-Hydroxy-4-morpholin-2,5-diarylfuran-3(2H)-one derivatives were constructed sequentially using iodine and zinc dust from simple and readily available methyl ketone and morpholine as the starting materials. Under mild conditions, C-C, C-N, and C-O bonds formed in a one-pot synthesis. A quaternary carbon center was successfully constructed, and the active drug fragment morpholine was introduced into the molecule.
Asunto(s)
Carbono , Yodo , Reacción de Cicloadición , Acetona , Yodo/química , Morfolinas , Cetonas/químicaRESUMEN
Concise synthesis of functionalized quinolines has received continuous research attention owing to the biological importance and synthetic potential of bicyclic N-heterocycles. However, synthetic routes to the 2,4-unsubstituted alkyl quinoline-3-carboxylate scaffold, which is an important motif in drug design, remain surprisingly limited, with modular protocols that proceed from readily available materials being even more so. We herein report an acidic I2-DMSO system that converts readily available aspartates and anilines into alkyl quinoline-3-carboxylate. This method can be extended to a straightforward synthesis of 3-arylquinolines by simply replacing the aspartates with phenylalanines. Mechanistic studies revealed that DMSO was activated by HI via a Pummerer reaction to provide the C1 synthon, while the amino acid catabolized to the C2 synthon through I2-mediated Strecker degradation. A formal [3 + 2 + 1] annulation of these two concurrently generated synthons with aniline was responsible for the selective formation of the quinoline core. The synthetic utility of this protocol was illustrated by the efficient synthesis of human 5-HT4 receptor ligand. Moreover, an unprecedented chemoselective synthesis of 2-deuterated, 3-substituted quinoline, featuring this reaction, has been established.
RESUMEN
The precise aromatization of the C-ring of podophyllotoxone to access value-added dehydropodophyllotoxin derivatives conventionally requires the use of equivalent amounts of unsustainable oxidants and suffers from inefficiencies. Taking advantage of the hydridic character of the C8 and C8' of podophyllotoxone, we have developed an I2-DMSO catalytic manifold that enables a green and selective dehydrogenative aromatization to overcome these synthetic challenges. An unprecedented dehydrogenative amination of podophyllotoxone derivatives was also realized using aniline as the reaction partner.
RESUMEN
Here, an efficient leaving group-activated methylene alcohol strategy for the preparation of primary propargyl alcohols from terminal alkynes by employing the bulk industrial product rongalite as the C1 unit has been described. The reaction avoids the low-temperature reaction conditions and inconvenient lithium reagents required for the classical method of preparing primary propargylic alcohols. Preliminary mechanistic studies showed that the reaction may not proceed via formaldehyde intermediates, but through the direct nucleophilic attack of the terminal alkyne on the carbon atom of rongalite by activation through SO2- as a leaving group.
RESUMEN
We herein report an efficient synthesis of 2-aroyl-3-arylquinolines from phenylalanines and anilines. The mechanism involves I2-mediated Strecker degradation enabled catabolism and reconstruction of amino acids and a cascade aniline-assisted annulation. Both DMSO and water act as oxygen sources in this convenient protocol.
RESUMEN
In this study, oral colon-targeted adhesion core-shell nanoparticles were designed by applying FA-Zein as the core and using pectin as the shell to enhance the low bioavailability exhibited by glycyrrhizic acid (GA) and the anti-inflammatory effect in specific parts of the intestine. As indicated by the results, the nanoparticles (NPs) remained stable in the stomach and small intestine, while pectins began to degrade and release GA in considerable amounts in the colon with the abundant flora. Subsequently, folate-acid targeting was further assessed with Raw 264.7 and NCM 460 cells. Lastly, NPs were reported to exhibit high adhesion on the colon by using the DSS-induced ulcerative colitis mouse model. Moreover, as indicated by in vitro and in vivo studies, nanoparticles could decrease the levels of MPO and TNF-α by reducing macrophages and neutrophils. In brief, this study provides an ideal loaded natural anti-inflammatory drug delivery system to treat ulcerative colitis.
Asunto(s)
Colitis Ulcerosa , Nanopartículas , Zeína , Animales , Disponibilidad Biológica , Colitis Ulcerosa/tratamiento farmacológico , Ácido Glicirrínico/efectos adversos , RatonesRESUMEN
Precise control of the chemoselectivity of the halogenation of a substrate equipped with multiple nucleophilic sites is highly demanding and challenging. Most reported chlorinations of methyl ketones show poor compatibility or even exclusive selectivity toward electron-rich arene, olefin, and alkyne residues. This is attributed to the direct or in situ employment of electrophilic Cl2/Cl+ species. Here, we reported that, even bearing those competitive residues, methyl ketones can still undergo dichlorination to afford α,α-dichloroketones in a chemo-specific manner. Enabled by the I2-dimethyl sulfoxide catalytic system, in which hydrochloric acid only acts as a nucleophilic Cl- donor, this straightforward dichlorination reaction is safe and operator-friendly and has high atomic economy, giving access to structurally diverse α,α-dichloroketones in good yields and with good functional-group tolerance.
Asunto(s)
Dimetilsulfóxido , Cetonas , Cetonas/química , Acetona , Catálisis , HalogenaciónRESUMEN
Pd-catalyzed cascade hydroarylation and C-H germylation of nonterminal alkenes and aryl iodides enabled by hydroxyl assistance have been developed. The key step in this C-H germylation cascade is the formation of a highly reactive oxo-palladacycle intermediate, which markedly restrained the ß-H elimination process. Mechanistically, control experiments indicated that the hydroxyl group played an important role in this process. This transformation shows excellent reactivity and selectivity for most substrates investigated.
Asunto(s)
Alquenos , Yoduros , Catálisis , Estructura Molecular , PaladioRESUMEN
A reductive coupling reaction was established for the synthesis of diaryl 1,2-dicarbonyl compounds from aryl methyl ketones in good yields. The mechanistic study showed the reaction undergoes C(CO)-C(sp3) bond cleavage, with the reductive coupling reaction occurring through an electron transfer process. Notably, the reaction not only is simple to operate but also has mild reaction conditions and a wide range of applicable substrates.
Asunto(s)
Cetonas , Zinc , Catálisis , Cetonas/químicaRESUMEN
An efficient I2-promoted one-pot one-step three-component reaction for the synthesis of sulfhydryl indolizines from methyl ketones, 2-pyridylacetate derivatives, and sulfonyl hydrazides via an in situ cyclization-rethiolation strategy has been developed. This protocol shows excellent substrate compatibility, including for chain and cyclic aliphatic methyl ketones, natural product pregnenolone acetate, and phosphorus-containing methyl ketones, affording a series of valuable aliphatic-substituted indolizines in good yields.