Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Macromol Rapid Commun ; 45(5): e2300586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972640

RESUMEN

Integrating diverse materials and functions into highly additive produce has piqued global interest due to the increasing demands of intelligent soft robotics. Nevertheless, existing assembly techniques, especially supramolecular assembly which heavily rely on precise chemical design and specific recognition, may prove inadequate when confronted with diverse external demands. Inspired by the traditional mechanical assembly, rivet connection, herein, a thermo-responsive hydrogel with unidirectional shape-morphing is fabricated and a stable mechanical assembly is constructed by emulating the rivet connection mechanism. This system employed poly(acrylamide-co-acrylic acid) [P(AAm-co-AAc)] to induce continuous swelling and hexylamine-modified polyvinyl alcohol (PVA-C6) as a molecular switch to control the swelling process. The hydrogel rivet, initially threaded through pre-fabricated hollows in two components. Subsequently, upon the disassociation of alkane chains the molecular switch would activate, inducing swelling and stable mechanical assembly via anchor structures. Moreover, to enhance the assembly strength, knots are introduced to enhance assembly strength, guiding localized stress release for programmed deformations. Additionally, the system can be remotely controlled using near-infrared light (NIR) by incorporating photo-thermal nanoparticles. This work presents a universal and efficient strategy for constructing stable mechanical assemblies without compromising overall softness, offering significant potential for the fabrication of integrated soft robots.


Asunto(s)
Hidrogeles , Nanopartículas , Hidrogeles/química , Alcohol Polivinílico/química , Rayos Infrarrojos
2.
Angew Chem Int Ed Engl ; 62(23): e202300417, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929609

RESUMEN

Many living organisms have the superb structure-editing capacity for better adaptation in dynamic environments over the course of their life cycle. However, it's still challenging to replicate such natural structure-editing capacity into artificial hydrogel actuating systems for enhancing environment-interactive functions. Herein, we learn from the metamorphosis development of glowing octopus to construct proof-of-concept fluorescent hydrogel actuators with life-like structure-editing capacity by developing a universal stepwise inside-out growth strategy. These actuators could perform origami-like 3D shape deformation and also enable the postnatal growth of new structures to adapt additional actuating states for different visual information delivery by using different environment keys (e.g., temperature, pH). This study opens previously unidentified-avenues of bio-inspired hydrogel actuators/robotics and extends the potential uses for environment-interactive information encryption.


Asunto(s)
Colorantes , Hidrogeles , Hidrogeles/química , Temperatura
3.
Small ; 18(38): e2203899, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35996809

RESUMEN

The design of new remediation strategies and materials for treating saline-alkaline soils is of fundamental and practical importantance for many applications. Conventional soil remediation strategies mainly focus on the development of fertilizers or additives for water, nutrient, and heavy metal managements in soils, but they often overlook a soil sensing function for early detection of salinization/alkalization levels toward optimal and timely soil remediation. Here, new smart soils, structurally consisting of the upper signal soil and the bottom hygroscopic bed and chemically including zwitterionic, thermo-responsive poly(NIPAM-co-VPES) and poly(NIPAM-co-SBAA) aerogels in each soil layer are formulated. Upon salinization, the resultant smart soils exhibit multiple superior capacities for reducing the soil salinity and alkalinity through ion exchange, controlling the water cycling, modulating the degradation of pyridine-base ligands into water-soluble, nitrogenous salts-rich ingredients for soil fertility, and real-time monitoring salinized soils via pH-induced allochroic color changes. Further studies of plant growth in smart soils with or without salinization treatments confirm a synergy effect of soil remediation and soil sensing on facilitating the growth of plants and increasing the saline-alkaline tolerance of plants. The esign concept of smart soils can be further expanded for soil remediation and assessment.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Fertilizantes , Ligandos , Polímeros , Piridinas , Sales (Química) , Suelo , Contaminantes del Suelo/análisis , Agua
4.
Small ; 16(48): e2005461, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169537

RESUMEN

Inspired by nature, diverse biomimetic hydrogel actuators are fabricated and become one of the most essential components of bionics research. Usually, the anisotropic structure of a hydrogel actuator is generated at the early fabrication process, only a specific shape transformation behavior can be produced under external stimuli, and thus has limited the development of hydrogel actuators toward the biomimetic shape deformation behavior. Herein, a novel bilayer hydrogel having a thermoresponsive actuating layer and a metal ion-responsive memorizing layer is proposed, therefore, a 2D hydrogel film can be fixed into various 3D shapes via supramolecular metal-ligand coordination, with further realizing programmable 4D shape deformation under the stimulus of temperature. By manipulating the temporary shapes via shape memory behavior, various temporary anisotropic structures can be obtained via the bilayer hydrogel, thus producing diverse reversible shape deformation performances, which is expected to promote the development of intelligent polymeric materials.

5.
Macromol Rapid Commun ; 41(8): e1900543, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32078213

RESUMEN

As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved, the realization of actuating behavior from 3D to 3D is still a significant challenge. Herein, an effective strategy to develop a novel bilayer hollow spherical hydrogel actuator is proposed. Through immersing a Ca2+ incorporated gelatin core into alginate solution, an ionic-strength-responsive alginate layer will be formed along the gelatin core via alginate-Ca2+ crosslinks, and then another thermo-responsive alginate-poly(2-(dimethylamino)ethyl methacrylate)(Alg-PDMAEMA) layer is introduced to achieve a bilayer hydrogel with ionic strength and temperature dual responsiveness. A hollow hydrogel capsule could be obtained if a spherical gelatin core is applied, and it could produce complex shape deformations from 3D to 3D upon the trigger of ionic strength and temperatures changes. The present work may offer new inspirations for the development of novel intelligent polymeric hydrogel actuators.


Asunto(s)
Hidrogeles/química , Membrana Dobles de Lípidos/química , Temperatura , Estructura Molecular , Concentración Osmolar , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
6.
Macromol Rapid Commun ; 40(4): e1800648, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30485580

RESUMEN

As one of the most important smart materials, fluorescent hydrogel actuators can produce both color and shape changes under external stimuli. In the present work, an effective approach to develop a novel fluorescent hydrogel actuator with pH and thermo dual responsiveness is proposed. Through incorporating pH-responsive perylene tetracarboxylic acid (PTCA), which is a typical fluorescent moiety with aggregation-caused quenching (ACQ) effect, into an anisotropic poly(N-isopropylacrylamide)-polyacrylamide (PNIPAm-PAAm) structure, the obtained hydrogel exhibits stable thermoresponsive shape deformation and switchable fluorescence performance upon a pH trigger. Therefore, fluorescence-quenching-based and actuation-based information can be revealed when exposed to UV light and immersed into warm water, respectively. Moreover, the thermoresponsive actuating behavior can be applied to further hide the fluorescence-quenching-based images. The present work may provide new insights into the design and preparation of novel stimuli-responsive hydrogel actuators.


Asunto(s)
Colorantes Fluorescentes/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Temperatura , Fluorescencia , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Propiedades de Superficie
7.
Angew Chem Int Ed Engl ; 58(45): 16243-16251, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31475456

RESUMEN

Many living organisms have amazing control over their color, shape, and morphology for camouflage, communication, and even reproduction in response to interplay between environmental stimuli. Such interesting phenomena inspire scientists to develop smart soft actuators/robotics via integrating color-changing functionality based on polymer films or elastomers. However, there has been no significant progress in synergistic color-changing and shape-morphing capabilities of life-like material systems such as hydrogels. Herein, we reported a new class of bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators based on supramolecular dynamic metal-ligand coordination. Artificial hydrogel apricot flowers and chameleons have been fabricated for the first time, in which simultaneous color-changing and shape-morphing behaviors are controlled by the subtle interplay between acidity/alkalinity, metal ions, and temperature. This work has made color-changeable soft machines accessible and is expected to hold wide potential applications in biomimetic soft robotics, biological sensors, and camouflage.

9.
Adv Mater ; 36(25): e2401659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533903

RESUMEN

Cephalopods evolve the acetylcholine-gated actuation control function of their skin muscles, which enables their dynamic/static multimode display capacities for achieving perfectly spatial control over the colors/patterns on every inch of skin. Reproduction of artificial analogs that exhibit similar multimodal display is essential to reach advanced information three-dimensional (3D) encoding with higher security than the classic 2D-encoding strategy, but remains underdeveloped. The core difficulty is how to replicate such chemical-gated actuation control function into artificial soft actuating systems. Herein, this work proposes to develop azobenzene-functionalized poly(acrylamide) (PAAm) hydrogel systems, whose upper critical solution temperature (UCST) type actuation responsiveness can be intelligently programmed or even gated by the addition of hydrophilic α-cyclodextrin (α-CD) molecules for reversible association with pendant azobenzene moieties via supramolecular host-guest interactions. By employing such α-CD-gated hydrogel actuator as an analogue of cephalopods' skin muscle, biomimetic mechanically modulated multicolor fluorescent display systems are designed, which demonstrate a conceptually new α-CD-gated "thermal stimulation-hydrogel actuation-fluorescence output" display mechanism. Consequently, high-security 3D-encoding information carriers with an unprecedented combination of single-input multiple-output, dynamic/static dual-mode and spatially controlled display capacities are achieved. This bioinspired strategy brings functional-integrated features for artificial display systems and opens previously unidentified avenues for information security.

10.
ACS Appl Mater Interfaces ; 14(2): 3551-3558, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34986635

RESUMEN

The deformable diversity of organisms in nature has inspired the development of bionic hydrogel actuators. However, the anisotropic structures of hydrogel actuators cannot be altered after the fabrication process, which restricts hydrogel actuators to provide complex and diverse shape deformations. Herein, we propose a dual programming method to generate numerous anisotropic structures from initial isotropic gelatin-containing hydrogels; the isotropic hydrogel blocks could be first assembled into anisotropic structures based on the coil-triple helix transition of gelatin, and then, the assembled hydrogels could further be fixed into various temporary anisotropies, so that they can produce complex and diverse deformations under the stimulation of pH. In addition, the shape programming and deformation behaviors are reversible. This dual programming method provides more potential for the application of hydrogel actuators in soft robots and bionics.

11.
Chem Sci ; 12(19): 6472-6487, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-34040724

RESUMEN

Shape deformation hydrogels, which are one of the most promising and essential classes of stimuli-responsive polymers, could provide large-scale and reversible deformation under external stimuli. Due to their wet and soft properties, shape deformation hydrogels are anticipated to be a candidate for the exploration of biomimetic materials, and have shown various potential applications in many fields. Here, an overview of the mechanisms of shape deformation hydrogels and methods for their preparation is presented. Some innovative and efficient strategies to fabricate programmable deformation hydrogels are then introduced. Moreover, successful explorations of their potential applications, including information encryption, soft robots and bionomic systems, are discussed. Finally, remaining great challenges including the achievement of multiple stable deformation states and the combination of shape deformation and sensing are highlighted.

12.
Int J Biol Macromol ; 190: 754-762, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517027

RESUMEN

Development of biological dressings has received widespread attentions due to their good breathability, biocompatibility, wettability, and the ability to absorb wound exudate without sticking to the wound. However, current proposed antibacterial hydrogels are limited antibacterial ability, short service life and insufficient biocompatibility, which are still challenging to address intricate practical applications. Here we develop a cationic peptide-based, salt-responsive hydrogel dressing with triple functions of antifouling, bactericidal, and bacterial release by combining ε-poly-l-lysine, poly(ethylene glycol) diglycidyl ether, and poly(DVBAPS-co-GMA) via a one-pot method. These designed hydrogels enabled to further quaternize to enhance antibacterial property due to the presence of amine residues. The resultant hydrogels present good antibacterial activity (>90%), biocompatibility, cell proliferation efficacy (~400%) and adhesiveness. Through in vivo and in vitro antibacterial capability tests, it is also found that hydrogels have good antifouling and sterilization capabilities, and the sterilization rate could reach up to ~96%. In addition, ~94% of the attached bacterial can be released after saline/water switching for several cycles. Taken together, the designed multiple antibacterial dressing prolongs the lifespan relying on reversible salt-responsive release and meet special requirements for wound healing. This work not only provides a platform to highlight its promising potentials in wound management but also gives a custom strategy to biomedical applications.


Asunto(s)
Antibacterianos/farmacología , Vendas Hidrocoloidales , Péptidos/farmacología , Sales (Química)/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Cationes , Muerte Celular/efectos de los fármacos , Línea Celular , Compuestos Epoxi/química , Resinas Epoxi/química , Escherichia coli/efectos de los fármacos , Femenino , Metacrilatos/química , Ratones , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
13.
ACS Appl Mater Interfaces ; 11(46): 43641-43648, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31663325

RESUMEN

Thermoresponsive hydrogel actuators have attracted tremendous interest due to their promising applications in artificial muscles, soft robotics, and flexible electronics. However, most of these materials are based on polymers with lower critical solution temperature (LCST), while those from upper critical solution temperature (UCST) are rare. Herein, we report a multiple-responsive UCST hydrogel actuator based on the complex of poly(acrylic acid) (PAAc) and poly(acrylamide) (PAAm). By applying a heterogeneous photopolymerization, a bilayer hydrogel was obtained, including a layer of the interpenetrating network (IPN) of PAAm/PAAc and a layer of a single network of PAAm. When cooled down below the UCST, the PAAm/PAAc layer contracted due to the hydrogen bonding of the two polymers while the PAAm layer stays in swelling state, driving the hydrogel to curl. By adjusting the composition of the two layers, the amplitude of actuation behavior could be regulated. By creating patterned IPN domains with photomasks, the hydrogel could deform into complex two-dimensional (2D) and three-dimensional (3D) shapes. An active motion was realized in both water and oil bath, thanks to the internal water exchange between the two layers. Interestingly, the hydrogel actuator is also responsive to urea and salts (Na2SO4, NaCl, NaSCN), due to that the strength of the hydrogen bonds in the IPN changes with the additives. Overall, the current study realized an anisotropic UCST transition by introducing asymmetrically distributed polymer-polymer hydrogen bonds, which would inspire new inventions of intelligent materials.

14.
Research (Wash D C) ; 2019: 2384347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31912028

RESUMEN

Inspired by the freezing tolerance performances found in living creatures, an effect approach is presented to develop novel antifreezing polymeric organohydrogel actuators. Through construction of a bilayer hydrogel including a nonresponsive polyacrylamide (PAAm) layer and a pH-responsive polyacrylic acid (PAA) layer in the presence of a mixed solvent of water and glycerol, organohydrogel actuators that could produce various shape deformations at subzero temperatures have been achieved, and the actuating speed could be tuned by adjusting the temperature and the ratio between glycerol and water. Moreover, a series of application demonstrations including a weightlifting robot, artificial valve, and robotic arm have been displayed. In addition, by introducing the ionic compound KI into the glycerol-based organogel, flexible conductors that could perform stable sensing performance over a wide range of temperatures from -30°C to 60°C have been developed.

15.
ACS Appl Mater Interfaces ; 11(51): 48564-48573, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31742383

RESUMEN

Inspired by the high importance of hollow structures in nature such as blood vessels and bamboos in matter transportation, properties enhancement, or even survival of living creatures, the creation of hollow materials remains of considerable interest. However, constructing hollow unique living-like soft and wet polymeric hydrogels with desirable structures and functionalities is still a big challenge. Here, we reported a robust and effective strategy to fabricate complex three-dimensional (3D) hollow polymeric hydrogel with designed shape and function diversity on the basis of supramolecular interactions. By placing a Ca2+ included gelatin core into the solution of alginate, hydrogel shell could be formed along with the shape of the gelatin core via coordination between alginate chains and Ca2+ diffused from gelatin. The hollow hydrogel could finally be obtained by dissolving the gelatin core. Various complex 3D hollow structures could be achieved by designing/constructing assembled gelatin core as a building block with adjustable supramolecular metal coordination position and strength. Moreover, hollow hydrogels with function diversity could be developed by introducing functional polymers or nanoparticles into the hydrogel wall. This work has made important progress in developing hollow polymeric hydrogel with desirable structures, shapes, and various functional applications including soft actuators and chemical reaction containers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda