Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Mol Life Sci ; 81(1): 319, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39078497

RESUMEN

Streptococcus pneumoniae (Spn) is the predominant pathogen responsible for community-acquired pneumonia (CAP) in children under five years old, and it can induce over 17% of pregnant women. However, no more effective measures exist to prevent infection induced by Spn in these two special populations. The beneficial microbes can antagonize Spn and provide new targets for preventing pneumococcal infections. This study used 16S rRNA gene sequencing and targeted metabolomics to evaluate the role of the Bacillus aerolatus CX253 (CX253) in alleviating Spn infection. Additionally, the colonization of CX253 was observed in nose, trachea, and lung by using confocal laser scanning microscopy and fluorescent labeling techniques. Compared with the model group, the expression level of interleukin-1ß was dropped 1.81-fold and 2.22-fold, and interleukin-6 was decreased 2.39-fold and 1.84-fold. The express of tumor necrosis factor-α was down 2.30-fold and 3.84-fold in prevention group of childhood and pregnant rats, respectively. The 16S rRNA sequencing results showed that CX253 administration alone significantly increased the abundance of Lactobacillus, Limosilactobacillus, and Prevotella in the gut of childhood and pregnant rats. Furthermore, the CX253 increased propionate in the gut of childhood rats and increased propionate and butyrate in the gut of pregnant rats to inhibit pulmonary inflammation. In summary, CX253 attenuated Spn-induced inflammation by regulating the gut microbiota and SCFAs. The research provides valuable information for the prevention of pneumonia.


Asunto(s)
Bacillus , Microbioma Gastrointestinal , Inflamación , Streptococcus pneumoniae , Animales , Femenino , Embarazo , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Inflamación/metabolismo , Inflamación/patología , Inflamación/microbiología , Bacillus/metabolismo , Humanos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ratas Sprague-Dawley , Masculino , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Probióticos/farmacología
2.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298877

RESUMEN

Selective photodynamic therapy (PDT) for cancer cells is more efficient and much safer. Most selective PDTs are realized by antigene-biomarker or peptide-biomarker interactions. Here, we modified dextran with hydrophobic cholesterol as a photosensitizer carrier to selectively target cancer cells, including colon cancer cells, and fulfilled selective PDT. The photosensitizer was designed with regular Aggregation-Induced Emission (AIE) units, including triphenylamine and 2-(3-cyano-4,5,5-trimethylfuran-2-ylidene)propanedinitrile. The AIE units can help to decrease the quenching effect in the aggregate state. The efficiency of the photosensitizer is further improved via the heavy atom effect after bromination modification. We found that the obtained photosensitizer nanoparticles could selectively target and ablate cancer cells after encapsulation into the dextran-cholesterol carrier. This study indicates that the polysaccharide-based carrier may have potential for cancer-targeting therapy beyond expectations.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Dextranos , Neoplasias/tratamiento farmacológico
3.
Phys Chem Chem Phys ; 24(1): 357-365, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34889935

RESUMEN

The electronic structures and optical properties of novel 2D biphenylene and hydrogen-terminated nanoribbons of different widths which are cut from a layer of biphenylene were explored via first-principles calculations. The findings of phonon computations demonstrate that such a biphenylene is dynamically stable and shows metallic properties. The crystal orbital Hamilton population analysis indicates that the tetra-ring local structure results in anisotropic mechanical properties. For 1D nanoribbons, their band gaps shrink, and a direct-indirect transition occurs in the band gap as the width increases, transforming the nanoribbon to endow them with metallic characteristics at a certain width. This is attributed to the weak coupling between the tetra-ring atoms, shrinking the direct band gap at the Y point in the Brillouin zone. Finally, the contribution of interband transitions to the dielectric function in 6-, 9-, and 12-armchair biphenylene nanoribbons (ABNRs) was identified. The lowest peak in the imaginary part of the dielectric function ε2 spectrum was mainly a contribution of a Γ-Γ transition. As the width of ABNR increases, the transitions in the x direction become stronger while the transition strength in the y direction is not significantly altered. This investigation extends the understanding of the electronic and optical properties of 2D biphenylene and 1D nanoribbons, which will benefit the practical applications of these materials in optoelectronics and electronics.

5.
ACS Nano ; 17(11): 10365-10375, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235750

RESUMEN

Traditional antibacterial procedures are getting inefficient due to the emergence of antimicrobial resistance, which makes alternative treatments in urgent demand. However, the selectivity toward infectious bacteria is still challenging. Herein, by taking advantage of the self-directed capture of infectious bacteria by macrophages, we developed a strategy to realize precise in vivo antibacterial photodynamic therapy (APDT) through adoptive photosensitizer-loaded macrophage transfer. TTD with strong reactive oxygen species (ROS) production and bright fluorescence was first synthesized and was subsequently formulated into TTD nanoparticles for lysosome targeting. TTD-loaded macrophages (TLMs) were constructed by direct incubation of TTD nanoparticles with macrophages, in which the TTD was localized in the lysosomes to meet the captured bacteria in the phagolysosomes. The TLMs could precisely capture and eradicate bacteria while being activated toward the proinflammatory and antibacterial M1 phenotype upon light illumination. More importantly, after subcutaneous injection, TLMs could effectively inhibit bacteria in the infected tissue through APDT, leading to good tissue recovery from severe bacterial infection. Overall, the engineered cell-based therapeutic approach shows great potential in the treatment of severe bacterial infectious diseases.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Fotoquimioterapia , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antibacterianos/uso terapéutico , Macrófagos , Bacterias
6.
Phys Chem Chem Phys ; 14(47): 16409-14, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23132378

RESUMEN

The geometric and electronic properties of curved armchair graphene nanoribbons without hydrogen atoms are investigated by first-principles calculations. The edge-atom bond length and ground state energy dramatically vary with the arc angle. The zipping or unzipping requirements for energy, arc angle, and interaction distance depend on the ribbon width. The increasing curvatures lead to drastic changes in electronic structures, such as energy gaps, energy dispersions, band-edge states, band mixing, band overlap and state degeneracy. There exist semiconductor-metal transitions during the variation of curvature. These are associated with the contribution of the edge atoms, the competition between the π and σ bonds, and hybridization of the 2p(y) and 2p(z) orbitals. The main features of the energy bands dominate the frequency, height, number, and structure of the prominent peaks in the density of states. The predicted results could be examined by experimental measurements.

7.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364673

RESUMEN

Element doping is a universal way to improve the electronic and optical properties of two-dimensional (2D) materials. Here, we investigate the influence of group-ⅣA element (C, Si, Ge, Sn, and Pb) doping on the electronic and optical properties of the ZnS monolayer with a tetragonal phase by using first-principles calculations. The results indicate that the doping atoms tend to form tetrahedral structures with neighboring S atoms. In these doped models, the formation energies are all negative, indicating that the formation processes of the doped models will release energy. The formation energy is smallest for C-doped ZnS and gradually increases with the metallicity of the doping element. The doped ZnS monolayer retains a direct band gap, with this band gap changing little in other element doping cases. Moreover, intermediate states are observed that are induced by the sp3 hybridization from the doping atoms and S atoms. Such intermediate states expand the optical absorption range into the visible spectrum. Our findings provide an in-depth understanding of the electronic and optical properties of the ZnS monolayer and the associated doping structures, which is helpful for application in optoelectronic devices.

8.
RSC Adv ; 12(10): 6166-6173, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35424580

RESUMEN

Modulation of the electronic and optical properties of two-dimensional (2D) materials is of great significance for their practical applications. Here, by using first-principles calculations, we study a tetragonal phase of monolayer ZnS, and explore its associated electronic and optical properties under biaxial strain. The results from phonon dispersion and molecular dynamics simulation demonstrate that the tetragonal phase of monolayer ZnS possesses a very high stability. The monolayer ZnS has a direct band gap of 4.20 eV. It changes to an indirect band gap under both compression and tension, exhibiting a decrease in band gap. However, the band gap decreases more slowly under compression compared to the tension process such that the direct band gap remains within -8%, demonstrating excellent endurance under pressure. Fortunately, tetragonal ZnS exhibits a good absorption ability in the ultraviolet (UV) range regardless of strain. Our research results enrich the understanding of monolayer ZnS, which is helpful for the design and application of optoelectronic devices using the material.

9.
Biomaterials ; 288: 121694, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35977850

RESUMEN

The level of anti-SARS-CoV-2 neutralizing antibodies (NAb) is an indispensable reference for evaluating the acquired protective immunity against SARS-CoV-2. Here, we established an ultrabright nanoparticles-based lateral flow immunoassay (LFIA) for one-step rapid semi-quantitative detection of anti-SARS-CoV-2 NAb in vaccinee's serum. Once embedded in polystyrene (PS) nanoparticles, the aggregation-induced emission (AIE) luminogen, AIE490, exhibited ultrabright fluorescence due to the rigidity of PS and severe inhibition of intramolecular motions. The ultrabright AIE490-PS nanoparticle was used as a fluorescent marker of LFIA. Upon optimized conditions including incubation time, concentrations of coated proteins and conjugated nanoparticles, amounts of antigens modified on the surface of nanoparticles, dilution rate of serum samples, and so on, the ultrabright nanoparticles-based LFIA could accurately identify 70 negative samples and 63 positive samples from human serum (p < 0.0001). The intra- and inter-assay precisions of the established method are above 13% and 16%, respectively. The established LFIA has tremendous practical value of generalization as a rapid semi-quantitative detection method of anti-SARS-CoV-2 NAb. Meanwhile, the AIE490-PS nanoparticle is also promising to detect many other analytes by altering the protein on the surface.


Asunto(s)
COVID-19 , Nanopartículas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Humanos , Inmunoensayo/métodos , SARS-CoV-2
10.
ACS Omega ; 5(29): 18213-18217, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32743196

RESUMEN

Electronic properties of monolayer tellurium (Te) with three proposed atomic configurations under external electric field were investigated through first-principles calculations. The calculated results demonstrate that α-Te and γ-Te have indirect band gaps, whereas ß-Te, when no electric field is applied, can be considered as a direct semiconductor. An interesting structural change occurs in α- and γ-phase Te under a specific electric field strength, as does a change in structural chirality. In the presence of a perpendicular electric field, the band gaps can be modified and drawn close to 0 eV at a certain critical electric field strength. Before that, the band gaps of α-Te and γ-Te are nearly constant, while that of ß-Te shows a quadratic relationship to electric field strength. These findings not only enrich our understanding of the electronic properties of monolayer tellurium but also show that monolayer tellurium has tremendous potential in nanoscale electronic devices owing to its tunable band gaps.

11.
RSC Adv ; 9(56): 32782-32790, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35529753

RESUMEN

This paper presents a design for silicene quantum dots (SiQDs) embedded in silicane. The shape and size of an embedded SiQD are managed by hydrogen atoms. A first-principles method was used to evaluate the magnetism as well as the electronic and structural properties of embedded SiQDs of various shapes and sizes. The shape of the embedded SiQD determined its electronic structure as well as the dot size. Moreover, the magnetic properties of SiQDs in silicane were highly shape dependent. The triangular SiQDs were all magnetic, some small parallelogram SiQDs were nonmagnetic, and all others were antiferromagnetic; almost all hexagonal SiQDs were nonmagnetic. An unequal number of bare Si atoms at the A and B sites was identified as a critical factor for establishing magnetism in embedded SiQDs. The tip of a triangular SiQD enhanced the magnetic moment of the dot. The parallelogram SiQD with two tip atoms appeared as a magnetic needle and has potential for use in spintronic applications. SiQDs embedded in silicane can be used in the design of silicon-based nanoelectronic devices and binary logic based on nanoscale magnetism.

12.
Org Lett ; 7(19): 4075-8, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16146355

RESUMEN

[structure: see text] A new donor-acceptor, 1,4,5,8,9,12-hexaazatriphenylene HATCNOR(n), is described. The synthesis of HATCNOR1 and HATCNOR6 is achieved by the regioselective displacement of 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HATCN) with an alkoxy group. The X-ray analysis revealed self-assembly of HATCNOR1 in the solid state. HATCNOR6 is the new difunctionalized hexaazatriphenylene discotic liquid crystal.

13.
Sci Rep ; 5: 15310, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26468677

RESUMEN

Hydrogen vacancies in graphane are products of incomplete hydrogenation of graphene. The missing H atoms can alter the electronic structure of graphane and therefore tune the electronic, magnetic, and optical properties of the composite. We systematically studied a variety of well-separated clusters of hydrogen vacancies in graphane, including the geometrical shapes of triangles, parallelograms, hexagons, and rectangles, by first-principles density functional calculation. The results indicate that energy levels caused by the missing H are generated in the broad band gap of pure graphane. All triangular clusters of H vacancies are magnetic, the larger the triangle the higher the magnetic moment. The defect levels introduced by the missing H in triangular and parallelogram clusters are spin-polarized and can find application in optical transition. Parallelograms and open-ended rectangles are antiferromagnetic and can be used for nanoscale registration of digital information.

14.
IEEE Trans Biomed Circuits Syst ; 7(6): 820-31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24473546

RESUMEN

This paper presents a highly-integrated DNA detection SoC, where several kinds of cantilever DNA sensors, a readout circuit, an MCU, voltage regulators, and a wireless transceiver, are integrated monolithically in a 0.35 µm CMOS Bio-MEMS process. The cantilever-based biosensors with embedded piezoresistors aim to transduce DNA hybridization into resistance variation without cumbersome labeling process. To improve detection sensitivity for low DNA concentration use, an oscillator-based self-calibrated readout circuit with high precision is proposed to convert small resistance variation ( of original resistance) of the sensor into adequate frequency variation and further into digital data. Moreover, its wireless capacity enables isolation of the sample solution from electrical wire lines and facilitates data transmission. To demonstrate the effectiveness of full system, it is applied to detect hepatitis B virus (HBV) DNA. The experimental results show that it has the capability to distinguish between one base-pair (1-bp) mismatch DNAs and match DNAs and achieves a limit of detection (LOD) of less than 1 pM.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN Viral/análisis , Virus de la Hepatitis B/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Semiconductores , ADN Viral/genética , Virus de la Hepatitis B/genética , Límite de Detección , Técnicas de Sonda Molecular/instrumentación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda