Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int Urogynecol J ; 34(10): 2529-2537, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37222740

RESUMEN

INTRODUCTION AND HYPOTHESIS: We aimed to explore the cellular properties of fibroblasts and smooth muscle cells (SMCs), the two major cell types of the vagina wall, in pelvic organ prolapse (POP) to improve the knowledge of the underlying molecular mechanisms of POP. METHODS: The single-cell RNA sequencing (scRNA-seq) profile GSE151202 was downloaded from NCBI Gene Expression Omnibus, in which vaginal wall tissues were harvested from patients with anterior vaginal wall prolapse and control subjects respectively. The scRNA-seq data of samples (5 POP and 5 controls) were adopted for analysis. Cluster analysis was performed to identify the cell subclusters. Trajectory analysis was applied to construct the differentiation trajectories of fibroblasts and SMCs. Cellular communication analysis was carried out to explore the ligand-receptor interactions between fibroblasts/SMCs and immune cells. RESULTS: Ten subclusters were determined in both groups, among which fibroblasts and SMCs were the most abundant cell types. Compared with controls, fibroblasts increased whereas SMCs declined in POP. During the transition of fibroblasts and SMCs from a normal into a disease state, extracellular matrix organization and antigen presentation were heightened. The intercellular communications were altered in POP. Interactions between fibroblasts/SMCs and macrophages/natural killer/T cells were strengthened as more ligand-receptor pairs involved in antigen presentation pathways were gained in POP. CONCLUSION: Extracellular matrix organization and antigen presentation abilities of fibroblasts and SMCs were enhanced in POP.

2.
PLoS One ; 13(5): e0197095, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29750808

RESUMEN

Ramie (Boehmeria nivea L. Gaud) fiber, one of the most important natural fibers, is extracted from stem bark. Continuous cropping is the main obstacle to ramie stem growth and a major cause of reduced yields. Root-associated microbes play crucial roles in plant growth and health. In this study, we investigated differences between microbial communities in the soil of healthy and continuously cropped ramie plants, and sought to identify potential mechanisms whereby these communities could counteract the problems posed by continuous cropping. Paired-end Illumina MiSeq analysis of 16S rRNA and ITS gene amplicons was employed to study bacterial and fungal communities. Long-term monoculture of ramie significantly decreased fiber yields and altered soil microbial communities. Our findings revealed how microbial communities and functional diversity varied according to the planting year and plant health status. Soil bacterial diversity increased with the period of ramie monoculture, whereas no significant differences were observed for fungi. Sequence analyses revealed that Firmicutes, Proteobacteria, and Acidobacteria were the most abundant bacterial phyla. Firmicutes abundance decreased with the period of ramie monoculture and correlated positively with the stem length, stem diameter, and fiber yield. The Actinobacteria, Chloroflexi, and Zygomycota phyla exhibited a significant (P < 0.05) negative correlation with yields during continuous cultivation. Some Actinobacteria members showed reduced microbial diversity, which prevented continuous ramie cropping. Ascomycota, Zygomycota, and Basidiomycota were the main fungal phyla. The relatively high abundance of Bacillus observed in healthy ramie may contribute to disease suppression, thereby promoting ramie growth. In summary, soil weakness and increased disease in ramie plants after long-term continuous cropping can be attributed to changes in soil microbes, a reduction in beneficial microbes, and an accumulation of harmful microbes.


Asunto(s)
Bacterias/genética , Boehmeria/microbiología , ADN Bacteriano/genética , ADN de Hongos/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Consorcios Microbianos/genética , Microbiología del Suelo , Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda