Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.462
Filtrar
Más filtros

Publication year range
1.
Nat Immunol ; 23(5): 781-790, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383307

RESUMEN

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Humanos , Fenotipo , Receptores de Antígenos de Linfocitos T/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
2.
Cell ; 162(1): 45-58, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26095253

RESUMEN

Colorectal cancer is a leading cause of cancer-related deaths. Mutations in the innate immune sensor AIM2 are frequently identified in patients with colorectal cancer, but how AIM2 modulates colonic tumorigenesis is unknown. Here, we found that Aim2-deficient mice were hypersusceptible to colonic tumor development. Production of inflammasome-associated cytokines and other inflammatory mediators was largely intact in Aim2-deficient mice; however, intestinal stem cells were prone to uncontrolled proliferation. Aberrant Wnt signaling expanded a population of tumor-initiating stem cells in the absence of AIM2. Susceptibility of Aim2-deficient mice to colorectal tumorigenesis was enhanced by a dysbiotic gut microbiota, which was reduced by reciprocal exchange of gut microbiota with healthy wild-type mice. These findings uncover a synergy between a specific host genetic factor and gut microbiota in determining the susceptibility to colorectal cancer. Therapeutic modulation of AIM2 expression and microbiota has the potential to prevent colorectal cancer.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre/patología , Animales , Azoximetano , Colitis/inducido químicamente , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Sulfato de Dextran , Enterocitos/patología , Tracto Gastrointestinal/microbiología , Inflamasomas/metabolismo , Ratones , Mutación , Células Madre/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(8): e2316731121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359290

RESUMEN

One important goal of circadian medicine is to apply time-of-day dosing to improve the efficacy of chemotherapy. However, limited knowledge of how the circadian clock regulates DNA repair presents a challenge to mechanism-based clinical application. We studied time-series genome-wide nucleotide excision repair in liver and kidney of wild type and three different clock mutant genotypes (Cry1-/-Cry2-/-, Per1-/-Per2-/-, and Bmal1-/-). Rhythmic repair on the nontranscribed strand was lost in all three clock mutants. Conversely, rhythmic repair of hundreds of genes on the transcribed strand (TSs) persisted in the livers of Cry1-/-Cry2-/- and Per1-/-Per2-/- mice. We identified a tissue-specific, promoter element-driven repair mode on TSs of collagen and angiogenesis genes in the absence of clock activators or repressors. Furthermore, repair on TSs of thousands of genes was altered when the circadian clock is disrupted. These data contribute to a better understanding of the regulatory role of the circadian clock on nucleotide excision repair in mammals and may be invaluable toward the design of time-aware platinum-based interventions in cancer.


Asunto(s)
Relojes Circadianos , Animales , Ratones , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Mutación , Nucleótidos , Criptocromos/genética , Factores de Transcripción ARNTL/genética , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(7): e2311854121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319971

RESUMEN

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For noncancerous breast tissue, inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of luminal A samples exhibit continued, albeit dampened and reprogrammed rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude luminal A tumors. Surprisingly, patients with high-magnitude tumors had reduced 5-y survival. Correspondingly, 3D luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.


Asunto(s)
Neoplasias de la Mama , Relojes Circadianos , Humanos , Femenino , Neoplasias de la Mama/patología , Relojes Circadianos/genética , Ritmo Circadiano , Estrógenos , Pronóstico
5.
EMBO J ; 41(2): e106973, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34704277

RESUMEN

Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.


Asunto(s)
Relojes Circadianos , Yeyuno/citología , Organoides/metabolismo , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Muerte Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Organoides/efectos de los fármacos , Organoides/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
6.
Blood ; 143(22): 2270-2283, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38446568

RESUMEN

ABSTRACT: Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.


Asunto(s)
Proteínas de Ciclo Celular , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
7.
PLoS Biol ; 21(5): e3002139, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37252926

RESUMEN

Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.


Asunto(s)
Apnea Obstructiva del Sueño , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/patología , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Hipoxia/metabolismo
8.
Nature ; 578(7794): 273-277, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025029

RESUMEN

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of α-synuclein, including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy1. Clinically, it is challenging to differentiate Parkinson's disease and multiple system atrophy, especially at the early stages of disease2. Aggregates of α-synuclein in distinct synucleinopathies have been proposed to represent different conformational strains of α-synuclein that can self-propagate and spread from cell to cell3-6. Protein misfolding cyclic amplification (PMCA) is a technique that has previously been used to detect α-synuclein aggregates in samples of cerebrospinal fluid with high sensitivity and specificity7,8. Here we show that the α-synuclein-PMCA assay can discriminate between samples of cerebrospinal fluid from patients diagnosed with Parkinson's disease and samples from patients with multiple system atrophy, with an overall sensitivity of 95.4%. We used a combination of biochemical, biophysical and biological methods to analyse the product of α-synuclein-PMCA, and found that the characteristics of the α-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson's disease and multiple system atrophy. We also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain. These findings suggest that α-synuclein aggregates that are associated with Parkinson's disease and multiple system atrophy correspond to different conformational strains of α-synuclein, which can be amplified and detected by α-synuclein-PMCA. Our results may help to improve our understanding of the mechanism of α-synuclein misfolding and the structures of the aggregates that are implicated in different synucleinopathies, and may also enable the development of a biochemical assay to discriminate between Parkinson's disease and multiple system atrophy.


Asunto(s)
Atrofia de Múltiples Sistemas/diagnóstico , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/química , Amiloide/química , Química Encefálica , Dicroismo Circular , Endopeptidasa K/metabolismo , Humanos , Atrofia de Múltiples Sistemas/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , alfa-Sinucleína/clasificación , alfa-Sinucleína/toxicidad
9.
PLoS Genet ; 19(6): e1010770, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37262074

RESUMEN

Disruption of the circadian clock is linked to cancer development and progression. Establishing this connection has proven beneficial for understanding cancer pathogenesis, determining prognosis, and uncovering novel therapeutic targets. However, barriers to characterizing the circadian clock in human pancreas and human pancreatic cancer-one of the deadliest malignancies-have hindered an appreciation of its role in this cancer. Here, we employed normalized coefficient of variation (nCV) and clock correlation analysis in human population-level data to determine the functioning of the circadian clock in pancreas cancer and adjacent normal tissue. We found a substantially attenuated clock in the pancreatic cancer tissue. Then we exploited our existing mouse pancreatic transcriptome data to perform an analysis of the human normal and pancreas cancer samples using a machine learning method, cyclic ordering by periodic structure (CYCLOPS). Through CYCLOPS ordering, we confirmed the nCV and clock correlation findings of an intact circadian clock in normal pancreas with robust cycling of several core clock genes. However, in pancreas cancer, there was a loss of rhythmicity of many core clock genes with an inability to effectively order the cancer samples, providing substantive evidence of a dysregulated clock. The implications of clock disruption were further assessed with a Bmal1 knockout pancreas cancer model, which revealed that an arrhythmic clock caused accelerated cancer growth and worse survival, accompanied by chemoresistance and enrichment of key cancer-related pathways. These findings provide strong evidence for clock disruption in human pancreas cancer and demonstrate a link between circadian disruption and pancreas cancer progression.


Asunto(s)
Relojes Circadianos , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Minociclina , Neoplasias Pancreáticas/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Neoplasias Pancreáticas
10.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
11.
Blood ; 142(2): 172-184, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001051

RESUMEN

Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non-DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene-mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non-DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.


Asunto(s)
Síndrome de Down , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Síndrome de Down/complicaciones , Síndrome de Down/genética , Mutación , Factores de Riesgo , Genómica , Aberraciones Cromosómicas , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
12.
Blood ; 142(8): 711-723, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37216686

RESUMEN

Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.


Asunto(s)
Cromosomas Humanos Par 21 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Cromosomas Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberraciones Cromosómicas , Citogenética , Genómica , Factor 1 de Ensamblaje de la Cromatina/genética
13.
FASEB J ; 38(1): e23332, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095232

RESUMEN

Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development. Here, we report a novel role for IGF-I in protecting hypoxic GCs from apoptosis by promoting DNA repair through the homologous recombination (HR) process. Indeed, the hypoxic environment within follicles significantly inhibited the efficiency of HR-directed DNA repair. The presence of IGF-I-induced HR pathway to alleviate hypoxia-induced DNA damage and apoptosis primarily through upregulating the expression of the RAD51 recombinase. Importantly, we identified a new transcriptional regulator of RAD51, namely E2F8, which mediates the protective effects of IGF-I on hypoxic GCs by facilitating the transcriptional activation of RAD51. Furthermore, we demonstrated that the PI3K/AKT pathway is crucial for IGF-I-induced E2F8 expression, resulting in increased RAD51 expression and enhanced HR activity, which mitigates hypoxia-induced DNA damage and thereby protects against GCs apoptosis. Together, these findings define a novel mechanism of IGF-I-mediated GCs protection by activating the HR repair through the PI3K/AKT/E2F8/RAD51 pathway under hypoxia.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Reparación del ADN por Recombinación , Femenino , Animales , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/genética , Hipoxia , Células de la Granulosa/metabolismo , Apoptosis , Mamíferos/metabolismo
14.
Cell Mol Life Sci ; 81(1): 27, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212546

RESUMEN

BACKGROUND: Breast cancer is a lethal malignancy affecting females worldwide. It has been reported that upregulated centromere protein A (CENPA) expression might indicate unfortunate prognosis and can function as a prognostic biomarker in breast cancer. This study aimed to investigate the accurate roles and downstream mechanisms of CENPA in breast cancer progression. METHODS: CENPA protein levels in breast cancer tissues and cell lines were analyzed by Western blot and immunohistochemistry assays. We used gain/loss-of-function experiments to determine the potential effects of CENPA and phospholipase A2 receptor (PLA2R1) on breast cancer cell proliferation, migration, and apoptosis. Co-IP assay was employed to validate the possible interaction between CENPA and DNA methyltransferase 1 (DNMT1), as well as PLA2R1 and hematopoietically expressed homeobox (HHEX). PLA2R1 promoter methylation was determined using methylation-specific PCR assay. The biological capabilities of CENPA/PLA2R1/HHEX axis in breast cancer cells was determined by rescue experiments. In addition, CENPA-silenced MCF-7 cells were injected into mice, followed by measurement of tumor growth. RESULTS: CENPA level was prominently elevated in breast cancer tissues and cell lines. Interestingly, CENPA knockdown and PLA2R1 overexpression both restrained breast cancer cell proliferation and migration, and enhanced apoptosis. On the contrary, CENPA overexpression displayed the opposite results. Moreover, CENPA reduced PLA2R1 expression through promoting DNMT1-mediated PLA2R1 promoter methylation. PLA2R1 overexpression could effectively abrogate CENPA overexpression-mediated augment of breast cancer cell progression. Furthermore, PLA2R1 interacted with HHEX and promoted HHEX expression. PLA2R1 knockdown increased the rate of breast cancer cell proliferation and migration but restrained apoptosis, which was abrogated by HHEX overexpression. In addition, CENPA silencing suppressed tumor growth in vivo. CONCLUSION: CENPA knockdown restrained breast cancer cell proliferation and migration and attenuated tumor growth in vivo through reducing PLA2R1 promoter methylation and increasing PLA2R1 and HHEX expression. We may provide a promising prognostic biomarker and novel therapeutic target for breast cancer.


Asunto(s)
Neoplasias , Receptores de Fosfolipasa A2 , Femenino , Animales , Ratones , Proteína A Centromérica/metabolismo , Receptores de Fosfolipasa A2/genética , Receptores de Fosfolipasa A2/metabolismo , Genes Homeobox , Línea Celular Tumoral , Metilación de ADN/genética , Biomarcadores/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética
15.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988981

RESUMEN

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Asunto(s)
Plaquetas , Megacariocitos , Animales , Humanos , Ratones , Transportadoras de Casetes de Unión a ATP/metabolismo , Plaquetas/metabolismo , Diferenciación Celular , Megacariocitos/metabolismo , Mercaptopurina/farmacología , Mercaptopurina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(18): e2123560119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35471909

RESUMEN

The duper mutation is a recessive mutation that shortens the period length of the circadian rhythm in Syrian hamsters. These animals show a large phase shift when responding to light pulses. Limited genetic resources for the Syrian hamster (Mesocricetus auratus) presented a major obstacle to cloning duper. This caused the duper mutation to remain unknown for over a decade. In this study, we did a de novo genome assembly of Syrian hamsters with long-read sequencing data from two different platforms, Pacific Biosciences and Oxford Nanopore Technologies. Using two distinct ecotypes and a fast homozygosity mapping strategy, we identified duper as an early nonsense allele of Cryptochrome 1 (Cry1) leading to a short, unstable protein. CRY1 is known as a highly conserved component of the repressive limb of the core circadian clock. The genome assembly and other genomic datasets generated in this study will facilitate the use of the Syrian hamster in biomedical research.


Asunto(s)
COVID-19 , Criptocromos , Animales , Ritmo Circadiano/genética , Cricetinae , Criptocromos/genética , Humanos , Mutación con Pérdida de Función , Mesocricetus , Mutación , Factores de Transcripción/genética
17.
Nano Lett ; 24(20): 6124-6130, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717388

RESUMEN

The identification of nanoparticles within heterogeneous mixtures poses significant challenges due to the similarity in physical properties among different nanomaterials. Here, we present electrochemically assisted high-resolution plasmonic scattering interferometric microscopy (HR-PSIM). This technique allows for the high-throughput identification of nanoparticles by accurately measuring the refractive index of individual nanoparticles without interference from background signals. Through elimination of parabolic scattering interference and employing electrochemical modulation, HR-PSIM demonstrates high spatial resolution and stability against background noise, enabling the differentiation of nanoparticles with closely matched refractive indices, such as Au and Ag nanoparticles. The efficacy of this method is demonstrated through its application in real-time, label-free imaging of nanoparticle electrochemical activity, providing a platform for the precise and high-throughput characterization of nanomaterials. The robustness of our approach against electrochemical interference and its high spatial resolution mark a significant advancement in the field of nanomaterial analysis, promising wide-ranging applications in nanoparticle research and beyond.

18.
Nano Lett ; 24(23): 6897-6905, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805366

RESUMEN

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes. The coupling between these nanocrystals and other plasmonic metal nanostructures, specifically Ag nanocubes and Au films of controlled nanoscale thickness, was investigated. Al nanocrystals show excellent long-term stability under atmospheric conditions, providing a practical alternative to coinage metal-based nanowires in assembled nanoscale devices.

19.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704027

RESUMEN

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Asunto(s)
Caenorhabditis elegans , Isoenzimas , Esfingolípidos , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Esfingolípidos/biosíntesis , Esfingolípidos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética , Espectrometría de Masas en Tándem , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Ceramidas/biosíntesis , Interferencia de ARN , Cromatografía Liquida
20.
J Cell Mol Med ; 28(13): e18519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973477

RESUMEN

Cuproptosis plays an important role in cancer, but its role in lung cancer remains unknown. Transcriptional profiles, clinical details and mutation data were acquired from the Cancer Genome Atlas database through a variety of methods. The analysis of this publicly available data was comprehensively performed using R software along with its relevant packages, ensuring a thorough examination of the information. In this study, we conducted a detailed analysis of cuproptosis-related genes and lncRNA co-expression, identifying 129 relevant lncRNAs and establishing a prognostic model with four key lncRNAs (LINC00996, RPARP-AS1, SND1-IT1, TMPO-AS1). Utilizing data from TCGA and GEO databases, the model effectively categorized patients into high- and low-risk groups, showing significant survival differences. Correlation analysis highlighted specific relationships between individual lncRNAs and cuproptosis genes. Our survival analysis indicated a higher survival rate in the low-risk group across various cohorts. Additionally, the model's predictive accuracy was confirmed through independent prognostic analysis and ROC curve evaluations. Functional enrichment analysis revealed distinct biological pathways and immune functions between risk groups. Tumour mutation load analysis differentiated high- and low-risk groups by their mutation profiles. Drug sensitivity analysis and immune infiltration studies using the CIBERSORT algorithm further elucidated the potential treatment responses in different risk groups. This comprehensive evaluation underscores the significance of lncRNAs in cuproptosis and their potential as biomarkers for lung cancer prognosis and immune microenvironment.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , ARN Largo no Codificante , Microambiente Tumoral , Humanos , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Pronóstico , Biomarcadores de Tumor/genética , Mutación , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Curva ROC
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda