Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Lett ; 49(16): 4709-4712, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146140

RESUMEN

Elliptical beams (EBs), an essential family of structured light, have been investigated theoretically due to their intriguing mathematical properties. However, their practical application has been significantly limited due to the inability to determine all their physical quantities, particularly the ellipticity factor, a unique parameter for EBs of different families. In this paper, to our knowledge, we proposed the first high-accuracy approach that can effectively distinguish EBs with an ellipticity factor difference of 0.01, equivalent to 99.9% field similarities. The method is based on a transformer deep learning (DL) network, and the accuracy has reached 99% for two distinct families of exemplified EBs. To prove that the high performance of this model can dramatically extend the practical aspect of EBs, we used EBs as information carriers in free-space optical communication for an image transmission task, and an error bit rate as low as 0.22% is achieved. Advancing the path of such a DL approach will facilitate the research of EBs for many practical applications such as optical imaging, optical sensing, and quantum-related systems.

2.
Opt Lett ; 49(10): 2633-2636, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748123

RESUMEN

We propose a rapid and precise scheme for characterizing the full-field frequency response of a thin-film lithium niobate-based intensity modulator (TFLN-IM) via a specially designed multi-tone microwave signal. Our proposed scheme remains insensitive to the bias-drift of IM. Experimental verification is implemented with a self-packaged TFLN-IM with a 3 dB bandwidth of 30 GHz. In comparison with the vector network analyzer (VNA) characterization results, the deviation values of the amplitude-frequency response (AFR) and phase-frequency response (PFR) within the 50 GHz bandwidth are below 0.3 dB and 0.15 rad, respectively. When the bias is drifted within 90% of the Vπ range, the deviation fluctuation values of AFR and PFR are less than 0.3 dB and 0.05 rad, respectively. With the help of the full-field response results, we can pre-compensate the TFLN-IM for the 64 Gbaud PAM-4 signals under the back-to-back (B2B) transmission, achieving a received optical power (ROP) gain of 2.3 dB. The versatility of our proposed full-field response characterization scheme can extend to various optical transceivers, offering the advantage of low cost, robust operation, and flexible implementation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda