Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Transl Oncol ; 45: 101926, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615437

RESUMEN

BACKGROUND: Lung cancer stands as the foremost cause of cancer-related fatalities globally. The presence of cancer stem cells (CSCs) poses a challenge, rendering current targeted tumor therapies ineffective. This study endeavors to investigate a novel therapeutic approach focusing on ferroptosis and delves into the expression of ferroptosis-related genes within lung CSCs. METHODS: We systematically examined RNA-seq datasets derived from lung tumor cells (LTCs) and lung cancer stem cells (LSCs), as previously investigated in our research. Our focus was on analyzing differentially expressed genes (DEGs) related to ferroptosis. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), we conducted functional analysis of these ferroptosis-related DEGs. Additionally, we employed protein‒protein interaction networks to identify hub genes. LC‒MS/MS analysis of LTCs and LSCs was conducted to pinpoint the crucial ferroptosis-related gene-thioredoxin-interacting protein (TXNIP).Further, we delved into the immune cell infiltration landscape of LTCs and LSCs, examining the correlation between TXNIP and lung adenocarcinoma (LUAD) using data from The Cancer Genome Atlas (TCGA) database. To complement these findings, we measured the expression levels of TXNIP, glutathione peroxidase 4(GPX4), nuclear receptor coactivator 4 (NCOA4) in LUAD tissues through immunohistochemistry (IHC) staining. RESULTS: A total of 651 DEGs were identified, with 17 of them being ferroptosis-related DEGs. These seventeen genes were categorized into four groups: driver genes, suppressor genes, unclassified genes, and inducer genes. Enrichment analysis revealed significant associations with oxidative stress, cell differentiation, tissue development, and cell death processes. The RNA-seq analysis demonstrated consistent gene expression patterns with protein expression, as evidenced by mass spectrometry analysis. Among the identified genes, SFN and TXNIP were singled out as hub genes, with TXNIP showing particularly noteworthy expression. The expression of the ferroptosis-related gene TXNIP exhibited correlations with the presence of an immunosuppressive microenvironment, TNM stages, and the degree of histological differentiation.Also, the ferroptosis-markers GPX4 and NCOA4 displayed correlations with LUAD. This comprehensive analysis underscores the significance of TXNIP in the context of ferroptosis-related processes and their potential implications in cancer development and progression. CONCLUSION: The investigation conducted in this study systematically delved into the role of the ferroptosis-related gene TXNIP in Lung CSCs. The identification of TXNIP as a potentially valuable biomarker in this context could have significant implications for refining prognostic assessments and optimizing therapeutic strategies for advanced lung cancer.

2.
Int J Psychophysiol ; 203: 112411, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116804

RESUMEN

Post-stroke patients often experience psychological distress and autonomic nervous system (ANS) dysregulation, impacting their well-being. This study evaluated the effectiveness of heart rate variability (HRV) biofeedback on cognitive, motor, psychological, and ANS functions in sixty-two ischemic stroke patients (43 males, mean age = 60.1) at a Medical Center in southern Taiwan. To prevent interaction, we allocated patients to the HRV biofeedback or control (usual care) group based on their assigned rehabilitation days, with 31 patients in each group. Assessments conducted at baseline, three, and six months included the Montreal Cognitive Assessment (MoCA), Fugl-Meyer Assessment for Upper Extremities (FMA-UE), Perceived Stress Scale, Hospital Anxiety and Depression Scales (HADS), and HRV indices. Mixed-effect models were used to analyze Group by Time interactions. The results revealed significant interactions across all functions. At 3 months, significant improvements in the HRV biofeedback group were observed only in MoCA, FMA-UE, and HADS-depression scores compared to the control group. By 6 months, all measured outcomes demonstrated significant improvements in the biofeedback group relative to the control group. These results suggest that HRV biofeedback may be an effective complementary intervention in post-stroke rehabilitation, warranting further validation.


Asunto(s)
Sistema Nervioso Autónomo , Biorretroalimentación Psicológica , Frecuencia Cardíaca , Rehabilitación de Accidente Cerebrovascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Biorretroalimentación Psicológica/métodos , Frecuencia Cardíaca/fisiología , Anciano , Sistema Nervioso Autónomo/fisiopatología , Accidente Cerebrovascular Isquémico/rehabilitación , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones
3.
Front Physiol ; 15: 1337554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332988

RESUMEN

Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity. Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells. Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model's ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step. Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model's performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage. Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers.

4.
Talanta ; 278: 126459, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38941809

RESUMEN

A novel "double chemical bonding" electrochemical peptide biosensor 2FcP-GA-GDY(Fe)@NMIL-B was developed for highly selective, ultrasensitive, and ultrastable identification of prostate-specific antigen (PSA). The C-Fe-O chemical bond linking Fe-Graphdiyne (Fe-GDY) with NH2-MIL88B(Fe) (NMIL88B) as the first chemical bonding of electrode carrier Fe-GDY@NH2-MIL88B(Fe) (GDY(Fe)@NMIL) significantly accelerates electron transport. With glutaraldehyde (GA) as a crosslinking agent, the Schiff-base -NC- formed by GDY(Fe)@NMIL nanocomposites links the two Fc molecules labeled peptides (2FcP) as the second chemical bonding, facilitating high-density attachment of peptides to the electrode carrier in a firm manner. When the PSA analyte is introduced to identify and cleave the specific peptide, the release of ferrocene from its head leads to a decrease in the electrical signal, enabling sensitive detection. The prepared sensing platform exhibits exceptional analytical performance for PSA with an extended linear response range from 10 fg mL-1 to 50 ng mL-1. Additionally, the detection limit has been significantly reduced to an ultra-low level of only 0.94 fg mL-1, surpassing those reported in most literature by several orders of magnitude. Moreover, the 2FcP-GA-GDY(Fe)@NMIL-B sensor has excellent selectivity and stability while also showcasing great potential for practical application of PSA detection in human serum using the standard addition method.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , Péptidos , Antígeno Prostático Específico , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/química , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Péptidos/química , Electrodos , Nanocompuestos/química
5.
Emerg Microbes Infect ; 13(1): 2307513, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38240267

RESUMEN

Re-emerging human adenovirus type 55 (HAdV55) has become a significant threat to public health due to its widespread circulation and the association with severe pneumonia, but an effective anti-HAdV55 agent remains unavailable. Herein, we report the generation of macaque-derived, human-like monoclonal antibodies (mAbs) protecting against HAdV55 infection with high potency. Using fluorophore-labelled HAdV55 virions as probes, we isolated specific memory B cells from rhesus macaques (Macaca mulatta) that were immunized twice with an experimental vaccine based on E1-, E3-deleted, replication-incompetent HAdV55. We cloned a total of 19 neutralizing mAbs, nine of which showed half-maximal inhibitory concentrations below 1.0 ng/ml. These mAbs recognized the hyper-variable-region (HVR) 1, 2, or 7 of viral hexon protein, or the fibre knob. In transgenic mice expressing human desmoglein-2, the major cellular receptor for HAdV55, a single intraperitoneal injection with hexon-targeting mAbs efficiently prevented HAdV55 infection, and mAb 29C12 showed protection at a dose as low as 0.004 mg/kg. Fibre-targeting mAb 28E8, however, showed protection only at a dose up to 12.5 mg/kg. In tree shrews that are permissive for HAdV55 infection and disease, mAb 29C12 effectively prevented HAdV55-caused pneumonia. Further analysis revealed that fibre-targeting mAbs blocked the attachment of HAdV55 to host cells, whereas hexon-targeting mAbs, regardless of their targeting HVRs, mainly functioned at post-attachment stage via inhibiting viral endosomal escape. Our results indicate that hexon-targeting mAbs have great anti-HAdV55 activities and warrant pre-clinical and clinical evaluation.


Asunto(s)
Adenovirus Humanos , Neumonía , Ratones , Animales , Humanos , Anticuerpos Neutralizantes , Ratones Transgénicos , Anticuerpos Antivirales , Adenovirus Humanos/genética , Tupaia , Macaca mulatta , Anticuerpos Monoclonales , Tupaiidae , Proteínas Virales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda