RESUMEN
14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.
RESUMEN
A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50â kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.
RESUMEN
exo-6b2-Methyl-substituted pentabenzocorannulene (exo-PBC-Me) was synthesized by the palladium-catalyzed cyclization of 1,2,3-triaryl-1H-cyclopenta[l]phenanthrene. Its bowl-shaped geometry with an sp3 carbon atom in the backbone and a methyl group located at the convex (exo) face was verified by X-ray crystallography. According to DFT calculations, the observed conformer is energetically more favorable than the endo one by 39.9â kcal/mol. Compared to the nitrogen-doped analogs with intact π-conjugated backbones (see the main text), exo-PBC-Me displayed a deeper bowl depth (avg. 1.93â Å), redshifted and broader absorption (250-620â nm) and emission (from 585 to more than 850â nm) bands and a smaller optical HOMO-LUMO gap (2.01â eV). exo-PBC-Me formed polar crystals where all bowl-in-bowl stacking with close π â â â π contacts is arranged unidirectionally, providing the potential for applications as organic semiconductors and pyroelectric materials. This unusual structural feature, molecular packing, and properties are most likely associated with the assistance of the methyl group and the sp3 carbon atom in the backbone.
RESUMEN
A series of hexapole helicenes (HHs) and nonuple helicenes (NHs) were prepared from 1,3,5-tris[2-(arylethynyl)phenyl]benzene through two steps, namely, iodocyclization and subsequent palladium-catalyzed annulation with ortho-bromoaryl carboxylic acids. The crucial advantages of this synthetic method are the facile introduction of substituents, high regioselectivity, and efficient backbone extension. Three-dimensional structures of three C1-symmetric HHs and one C3-symmetric NH were elucidated using X-ray crystallography. Unlike most conventional multiple helicenes, the HHs and NHs investigated herein possess a unique structural feature where some double helical moieties share a terminal naphthalene unit. Chiral resolution of a HH and an NH was successfully achieved, and the enantiomerization barrier (ΔH) of the HH was experimentally determined to be 31.2 kcal/mol. A straightforward method for predicting the most stable diastereomer was developed based on density functional theory calculations and structural considerations. It was found that the relative potential energies (ΔHrs) of all diastereomers for two HHs and one NH can be obtained using minimal computational effort to analyze the types, helical configurations, numbers, and ΔH(MP-MM)s [= H(M,P/P,M) - H(M,M/P,P)] of the double helicenyl fragments.
RESUMEN
A series of new [2,2]fluorenophanes has been synthesized and characterized; among them, molecules of crystallographically asymmetric anti-[2.2](1,4)(4,1)fluorenophane (K2C-2) aggregate to form one-dimensional supramolecular chain structures through effective intermolecular π-π overlapping. This, in combination with the synergistic intramolecular π-π interaction, leads to prominent dual emission mediated by charge transfer (CT) exciton delocalization. Support of this new insight is given by mapping the transition density along the π-π packing direction where the intramolecular excitation and intermolecular CT coexist in K2C-2.
RESUMEN
This study presents an important and efficient synthetic approach to 5,8-dibromo-2,11-di-tert-butylpicene (3), with multigram scale, which was then converted to a new series of picenophanes (6-10). The tub-shaped [2,2](5,8)picenophanediene 8 with two cis-ethylene linkers was explored using X-ray crystallography. The tub-to-tub inversion proceed through the successive bending of the linkers and the barrier for isopropyl-substituted derivative 10 was experimentally estimated to be 18.7 kcal/mol. Picenophanes with a large π-system and semi-rigid structure exhibited anomalous photophysical properties. The ethano-bridged picenophane shows the weak exciton delocalization while the cis-ethylene-bridged picenophane exhibits dual emission rendered by the weakly delocalized exciton and excimer. With the aid of the ultrafast time-resolved emission spectroscopy, the mechanism of the excimer formation is resolved, showing a unique behavior of two-state reversible reaction with fast structural deformation whose lifetime is around 20 ps at 298 K. This work demonstrates that the slight difference in the bridge of tub-shaped picenophanes renders distinct photophysical behavior, revealing the potential of harnessing inter-moiety reaction in the picenophane systems.
RESUMEN
BACKGROUND: The occurrence and degree of suicidal ideation during the past month in adolescents should be regarded seriously. Several studies have noted that humor expression style and depressive emotion may influence adolescents' suicidal ideation. However, there is insufficient evidence concerning whether positive emotion reduces such suicidal ideation in adolescents. In addition, the relationships among humor expression, depressive emotion, positive emotion and suicidal ideation remain to be confirmed. Therefore, in this study, we aimed to test the mediating roles of depressive emotion and positive emotion in the relationship between humor expression and recent adolescent's suicidal ideation. METHODS: A total of 1551 students in junior high school completed questionnaires. The collected data were analyzed using structural equation modeling (SEM) with LISREL 8.80 and Monte Carlo resampling with R. RESULTS: The results indicate that suicidal ideation in adolescents during the past month was related not only to humor expression but also to depressive emotion and positive emotion. The stronger the depressive emotion felt, the stronger the suicidal ideation; in contrast, the stronger the positive emotion, the weaker the suicidal ideation. Moreover, depressive emotion and positive emotion were found to mediate the relationship between humor expression and suicidal ideation; additionally, positive emotion was found to mediate the relationship between depressive emotion and suicidal ideation. CONCLUSION: These results highlight that depressive emotion and positive emotion may mediate the influence of humor expression on suicidal ideation among adolescents, and positive emotion may mediate the influence of depressive emotion on suicidal ideation. More attention should be paid to decreasing adolescents' self-deprecating humor expression and depressive emotion, whereas more witty response humor expression and positive emotion should be encouraged to prevent their suicidal ideation.
Asunto(s)
Estudiantes , Ideación Suicida , Adolescente , Emociones , Humanos , Encuestas y CuestionariosRESUMEN
Diindeno-fused dibenzo[a,h]anthracene 6 and diindeno-fused dibenzo[c,l]chrysene 9 contain the key moieties 1,4-quinodipropene (1,4-QDP) and 2,6-naphthoquinodipropene (2,6-NQDP), respectively, and they both have an open-shell singlet ground state. The latter compound exhibits a strong biradical character and interesting properties, including a low ΔET-S (2.44â kcal mol-1 ), a small HOMO-LUMO gap (1.06â eV), a wide photoabsorption range (250-1172â nm), and a large two-photon absorption cross-section (σ=1342±56 GM). This work verifies that 6 has a slightly larger HOMO-LUMO gap and ΔET-S than its helical isomer diindeno[2,1-f:1',2'-j]picene (DIP), but is a much stronger two-photon absorber, verifying the important effect of geometry on the photophysical properties.
RESUMEN
Indeno[1,2-b]fluorene-based [2,2]cyclophanes with 4n/4n and 4n/[4n+2] π-electron systems were prepared, and their structures were identified by X-ray crystallography. With short π-π distances around 3.0â Å, [2.2](5,11)indeno[1,2-b]fluorenophane and its precursor [2.2](5,11)indeno[1,2-b]fluorene-6,12-dionophane exhibit remarkable transannular interactions, leading to their unusual electrochemical and photophysical properties. With the aid of femtosecond transient absorption spectroscopy, the transition from the monomeric excited state to the redshifted H-type dimeric state was first observed, correlating to the calculated excitonic energy splitting and the steady-state absorption spectra induced by charge-transfer-mediated superexchange interaction.
RESUMEN
5,14-Diaryldiindeno[2,1- f:1',2' -j]picene (DDP, 1), a thermally and chemically stable helical arene, can be prepared from 1,4-bis[2-(arylethynyl)phenyl]benzene in four synthetic steps. Its helical backbone, which incorporates an o-quinodimethane moiety, was verified by X-ray crystallography, and this structural feature results in a very high barrier to racemization (exceeding 50 kcal/mol). DDP possesses versatile and promising properties, including a small HOMO-LUMO energy gap (1.31 eV for the dimesityl-substituted derivative 1ab), an electron spin resonance (ESR)-active character, a small triplet-singlet energy gap (4.75 kcal/mol), broad photoabsorption covering the ultraviolet, visible, and near-infrared (NIR) regions, two-photon absorption in the NIR range, and respectable ambipolar charge-transport behavior in a solution-processed organic field-effect transistor.
RESUMEN
Nanoparticle (NP) stability is imperative for commercialization of nanotechnology. In this study, we compare the stability of Au NPs with surfaces functionalized with oleylamine, dodecanethiol, and two dendritic ligands of different generations. Dendrimer ligands provide a significant increase in the chemical stability of Au NPs when analyzed by cyanide-induced NP decomposition as well as an investigation into their colloidal stability at ambient conditions. These results were supported by absorption measurements, transmission electron microscopy, thermogravimetric analysis, nuclear magnetic resonance, and small-angle transmission X-ray scattering and show that dendrimers play a key role in improving the chemical and colloidal stability of NPs.
RESUMEN
The synthesis colloidal nanocrystals in nonpolar organic solvents has led to exceptional size- and shape-control, enabling the formation of nanocrystal superlattices isostructural to atomic lattices built with nanocrystals rather than atoms. The long aliphatic ligands (e.g., oleic acid) used to achieve this control separate nanocrystals too far in the solid state for most charge-transporting devices. Solid-state ligand exchange, which brings particles closer together and enhances conductivity, necessitates large changes in the total volume of the solid (compressive stress), which leads to film cracking. In this work, truncate octahedral lead selenide nanocrystals are shown to self-assemble into body-centered cubic superlattices in which the atomic axes of the individual nanocrystals are coaligned with the crystal axes of the superlattice. Due to this coalignment, upon ligand exchange of the superlattices, cracking is preferentially observed on ⟨011⟩ superlattice directions. This observation is related to differences in the ligand binding to exposed {100} and {111} planes of the PbSe nanocrystal surfaces. This result has implications for binary and more complex structures in which differential reactivity of the constituent elements can lead to disruption of the desired structure. In addition, cracks in PbSe superlattices occur in a semiregular spacings inversely related to the superlattice domain size and strongly influenced by the presence of twin boundaries, which serve as both emission centers and propagation barriers for fractures. This work shows that defects, similar to behavior in nanotwinned metals, could be used to engineer enhanced mechanical strength and electrical conductivity in nanocrystal superlattices.
RESUMEN
We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid-interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir-Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidence small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.
RESUMEN
The association behavior of an electron-donating, bowl-shaped, truxene-based tetrathiafulvalene (truxTTF) with two corannulene-based fullerene fragments, C32 H12 and C38 H14 , is investigated in several solvents. Formation of 1:1 complexes is followed by absorption titrations and complemented by density functional theory (DFT) calculations. The binding constants are in the range log Ka =2.9-3.5. DFT calculations reveal that the most stable arrangement is the conformation in which the 1,3-dithiole ring of truxTTF is placed inside the concave cavity of the corannulene derivative. This arrangement is confirmed experimentally by NMR measurements, and implies that a combination of π-π and CH-π interactions is the driving force for association. Time-dependent DFT calculations reproduce the experimental UV/Vis titrations and provide a detailed understanding of the spectral changes observed. Femtosecond transient absorption studies reveal the processes occurring after photoexcitation of either C32 H12 or C38 H14 and their supramolecular associates with truxTTF. In the case of truxTTFâ C38 H14 , photoexcitation yields the charge-separated state truxTTF.+ â C38 H14.- with a lifetime of approximately 160â ps.
RESUMEN
A 2D self-assembly of a C32H12 buckybowl on the Cu(111) surface has been studied by means of scanning tunnelling microscopy. Additional aromatic rings at the rim of the corannulene core cause the bowl-shaped molecule to stand on its edge. This adsorption mode allows distinct π-π and C-Hπ interactions between the convex bowl surfaces as well as between the hydrogen-terminated rim and the convex bowl faces.
RESUMEN
This investigation demonstrates that a series of biphenylenes can be easily prepared from their corresponding halobiphenyls by the cyclization of inâ situ generated 2',3'-didehydro-2-lithiobiphenyls at low temperature. Two remarkable advantages of this synthetic method include 1)â the lack of any need for transition-metal catalysts or reagents in the cyclization, and 2)â the ability to obtain C1-functionalized products by treating the reaction intermediate 1-lithiobiphenylene with an electrophilic reagent. π-Extended derivatives, such as benzobiphenylenes, dibenzobiphenylene, linear/angular [3]phenylenes, and biphenyleno[2,3-b]biphenylenes, were synthesized similarly using suitable biaryls or teraryls.
RESUMEN
The self-assembly of the C38H14-buckybowl, a fragment bowl of the C70 fullerene, has been studied with scanning tunneling microscopy on the Cu(111) surface. Isolated molecules adsorb bowl opening-up with the center C6 ring parallel to the surface. In extended 2D islands, however, 1/3 of the molecules are oriented such that the bowl opening points down. From a detailed analysis of relative orientation of the molecules, the nature of intermolecular lateral interactions is identified. In densely packed islands, π-π bonding between convex sides of the bowls dominate, while π-H bonding between rim and convex sides plays the important role in small molecular 2D clusters.
RESUMEN
The syntheses, structures, and physical properties of a full series of benzannulated tetraphenylenes are reported. The palladium-catalyzed annulation of tetraiodo-substituted 2,3,6,7,10,11,14,15-octamethyltetraphenylene with insufficient di(4-anisyl)ethyne yielded a mixture of per-substituted [8]circulene and its non-planar fragments, including mono-, para-di-, ortho-di-, and triannulated products. Their structures were unambiguously verified by X-ray crystallography. Successive benzannulations significantly affect the molecular geometries, dynamic behaviors, and physical properties of the compounds. In this series of compounds, [8]circulene is the most strained one, as reflected by the significant deplanarization of the phenanthrene moieties (ca. 63° in the bay region) and the fact that it has the highest strain energy (120.6â kcal mol(-1) ). The dynamic behaviors of these compounds were examined both experimentally and theoretically. The ring flipping of per-substituted [8]circulene is confirmed to proceed through pseudorotation with a barrier of around 21â kcal mol(-1) , whereas its non-planar fragments require much more energy for the ring inversion. The photophysical and electrochemical properties of the investigated compounds depend strongly on the extent of efficient π conjugation. The successive benzannulations red-shift both the absorption and the emission bands, and reduce the first oxidation potential.
RESUMEN
We report a low-cost, large-area fabrication process using solution-based nanoimprinting and compact ligand exchange of colloidal Au nanocrystals to define anisotropic, subwavelength, plasmonic nanoinclusions for optical metasurfaces. Rod-shaped, Au nanocrystal-based nanoantennas possess strong, localized, plasmonic resonances able to control polarization. We fabricate metasurfaces from rod-shaped nanoantennas tailored in size and spacing to demonstrate Au nanocrystal-based quarter-wave plates that operate with extreme bandwidths and provide high polarization conversion efficiencies in the near-to-mid infrared.
Asunto(s)
Coloides/química , Oro/química , Nanopartículas/química , Nanoestructuras/química , Nanotecnología/métodos , Anisotropía , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura , Resonancia por Plasmón de Superficie , Propiedades de SuperficieRESUMEN
The palladium-catalyzed annulation of 9-bromo- and 9-chlorophenanthrenes with alkynes gave 4,5-disubstituted acephenanthrylenes in yields of 58-95% (9 examples). Asymmetric alkynes, such as 1-phenyl-1-propyne, 1-phenyl-1-hexyne, and 1-cyclopropyl-2-phenylethyne, regioselectively form (cyclo)alkyl-substituted products, following the regular rule that governs the carbopalladation of alkynes. This synthetic protocol can also be utilized in annulations with several π-extended bromoarenes, such as 7-bromo[5]helicene, 5-bromo[4]helicene, 9-bromoanthracene, 3-bromoperylene, and 3-bromofluoranthene, to give the corresponding annulated products in moderate to good yields (51-86%; 6 examples). Similarly, bromocorannulene produced highly curved 1,2-disubstituted cyclopentacorannulenes. Reactions of 6,12-dibromochrysene and 4,7-dibromo[4]helicene with di(4-tolyl)ethyne provided the twofold annulated products in moderate yields. 4,5-Diphenylacephenanthrylene and 6,7-diphenylbenzo[a]acephenanthrylene thus generated were converted into phenanthro[9,10-e]acephenanthrylene and benzo[a]phenanthro[9,10-e]acephenanthrylene, respectively, by oxidative cyclodehydrogenation. The structures of 4,5-diphenylacephenanthrylene, 4,5-diphenyldibenzo[a,l]acephenanthrylene, 1,2-diarylcyclopentacorannulenes, and benzo[a]phenanthro[9,10-e]acephenanthrylene were verified by X-ray crystallography. The photophysical and electrochemical properties of the selected annulated products were investigated.