Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Biol Sci ; 290(2012): 20232232, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052241

RESUMEN

Mass extinctions have fundamentally altered the structure of the biosphere throughout Earth's history. The ecological severity of mass extinctions is well studied in marine ecosystems by categorizing marine taxa into functional groups based on 'ecospace' approaches, but the ecological response of terrestrial ecosystems to mass extinctions is less well understood due to the lack of a comparable methodology. Here, we present a new terrestrial ecospace framework that categorizes fauna into functional groups as defined by tiering, motility and feeding traits. We applied the new terrestrial and traditional marine ecospace analyses to data from the Paleobiology Database across the end-Triassic mass extinction-a time of catastrophic global warming-to compare changes between the marine and terrestrial biospheres. We found that terrestrial functional groups experienced higher extinction severity, that taxonomic and functional richness are more tightly coupled in the terrestrial, and that the terrestrial realm continued to experience high ecological dissimilarity in the wake of the extinction. Although signals of extinction severity and ecological turnover are sensitive to the quality of the terrestrial fossil record, our findings suggest greater ecological pressure from the end-Triassic mass extinction on terrestrial ecosystems than marine ecosystems, contributing to more prolonged terrestrial ecological flux.


Asunto(s)
Ecosistema , Extinción Biológica , Fósiles , Bases de Datos Factuales , Biodiversidad
2.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30870992

RESUMEN

Mammalian telomere lengths are primarily regulated by telomerase, consisting of a reverse transcriptase protein (TERT) and an RNA subunit (TERC). We previously reported the generation of mouse Terc+/- and Terc-/- embryonic stem cells (ntESCs) by somatic cell nuclear transfer. In the present work, we investigated the germ layer development competence of Terc-/-, Terc+/- and wild-type (Terc+/+) ntESCs. The telomere lengths are longest in wild-type but shortest in Terc-/- ntESCs, and correlate reversely with the population doubling time. Interestingly, while in vitro embryoid body (EB) differentiation assay reveals EB size difference among ntESCs of different genotypes, the more stringent in vivo teratoma assay demonstrates that Terc-/- ntESCs are severely defective in differentiating into the mesodermal lineage cartilage. Consistently, in a directed in vitro chondrocyte differentiation assay, the Terc-/- cells failed in forming Collagen II expressing cells. These findings underscore the significance in maintaining proper telomere lengths in stem cells and their derivatives for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Núcleo Celular/fisiología , Condrocitos/fisiología , Células Madre Embrionarias de Ratones/fisiología , ARN/genética , Telomerasa/genética , Animales , Cartílago/fisiología , Diferenciación Celular/genética , Núcleo Celular/genética , Células Cultivadas , Condrogénesis/genética , Condrogénesis/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Transferencia Nuclear , Telómero/genética , Homeostasis del Telómero/genética , Homeostasis del Telómero/fisiología
3.
Sci Rep ; 11(1): 19349, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593843

RESUMEN

Polyphyodonty-multiple tooth generations-in Mesozoic birds has been confirmed since the nineteenth century. Their dental cycle had been assessed through sparse data from tooth roots revealed through broken jawbones and disattached teeth. However, detailed descriptions of their tooth cycling are lacking, and the specifics of their replacement patterns remain largely unknown. Here we present unprecedented µCT data from three enantiornithine specimens from the Upper Cretaceous of southeastern Brazil. The high resolution µCT data show an alternating dental replacement pattern in the premaxillae, consistent with the widespread pattern amongst extinct and extant reptiles. The dentary also reveals dental replacement at different stages. These results strongly suggest that an alternating pattern was typical of enantiornithine birds. µCT data show that new teeth start lingually within the alveoli, resorb roots of functional teeth and migrate labially into their pulp cavities at an early stage, similar to modern crocodilians. Our results imply that the control mechanism for tooth cycling is conserved during the transition between non-avian reptiles and birds. These first 3D reconstructions of enantiornithine dental replacement demonstrate that 3D data are essential to understand the evolution and deep homology of archosaurian tooth cycling.


Asunto(s)
Aves/anatomía & histología , Diente/crecimiento & desarrollo , Animales , Evolución Biológica , Brasil , Fósiles/anatomía & histología , Fósiles/diagnóstico por imagen , Diente/anatomía & histología , Diente/diagnóstico por imagen , Microtomografía por Rayos X
4.
Sci Rep ; 10(1): 6303, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286419

RESUMEN

The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.


Asunto(s)
Pollos/fisiología , Especiación Genética , Nervios Espinales/crecimiento & desarrollo , Cola (estructura animal)/inervación , Caimanes y Cocodrilos/anatomía & histología , Animales , Embrión de Pollo , Pollos/anatomía & histología , Desarrollo Embrionario/fisiología , Fósiles/anatomía & histología , Lagartos/anatomía & histología , Filogenia , Nervios Espinales/anatomía & histología , Cola (estructura animal)/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda