Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Proteome Res ; 23(2): 644-652, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38153093

RESUMEN

Identification of K-Ras and B-Raf mutations in colorectal cancer (CRC) is essential to predict patients' response to anti-EGFR therapy and formulate appropriate therapeutic strategies to improve prognosis and survival. Here, we combined parallel reaction monitoring (PRM) with high-field asymmetric waveform ion mobility (FAIMS) to enhance mass spectrometry sensitivity and improve the identification of low-abundance K-Ras and B-Raf mutations in biological samples without immunoaffinity enrichment. In targeted LC-MS/MS analyses, FAIMS reduced the occurrence of interfering ions and enhanced precursor ion purity, resulting in a 3-fold improvement in the detection limit for K-Ras and B-Raf mutated peptides. In addition, the ion mobility separation of isomeric peptides using FAIMS facilitated the unambiguous identification of K-Ras G12D and G13D peptides. The application of targeted LC-MS/MS analyses using FAIMS is demonstrated for the detection and quantitation of B-Raf V600E, K-Ras G12D, G13D, and G12V in CRC cell lines and primary specimens.


Asunto(s)
Neoplasias Colorrectales , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Péptidos/química , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Neoplasias Colorrectales/genética , Iones/química
2.
J Proteome Res ; 22(3): 812-825, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723483

RESUMEN

Protein inhibitor of activated STAT (PIAS) proteins are E3 SUMO ligases playing important roles in protein stability and signaling transduction pathways. PIAS proteins are overexpressed in the triple-negative breast cancer cell line MDA-MB-231, and PIAS knockout (KO) results in a reduction in cell proliferation and cell arrest in the S phase. However, the molecular mechanisms underlying PIAS functions in cell proliferation and cell cycle remain largely unknown. Here, we used quantitative SUMO proteomics to explore the regulatory role of PIAS SUMO E3 ligases upon CRISPR/Cas9 KO of individual PIAS. A total of 1422 sites were identified, and around 10% of SUMO sites were regulated following KO of one or more PIAS genes. We identified protein substrates that were either specific to individual PIAS ligase or regulated by several PIAS ligases. Ki-67 and TOP2A, which are involved in cell proliferation and epithelial-to-mesenchymal transition, are SUMOylated at several lysine residues by all PIAS ligases, suggesting a level of redundancy between these proteins. Confocal microscopy and biochemical experiments revealed that SUMOylation regulated TOP2A protein stability, while this modification is involved in the recruitment of Ki-67 nucleolar proteins containing the SUMO interacting motif. These results provide novel insights into both the redundant and specific regulatory mechanisms of cell proliferation and cell cycle mediated by PIAS SUMO E3 ligases.


Asunto(s)
Proteómica , Ubiquitina-Proteína Ligasas , Antígeno Ki-67/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Proliferación Celular , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
3.
Anal Chem ; 94(35): 12086-12094, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35995421

RESUMEN

The sensitivity and depth of proteomic analyses are limited by isobaric ions and interferences that preclude the identification of low abundance peptides. Extensive sample fractionation is often required to extend proteome coverage when sample amount is not a limitation. Ion mobility devices provide a viable alternate approach to resolve confounding ions and improve peak capacity and mass spectrometry (MS) sensitivity. Here, we report the integration of differential ion mobility with segmented ion fractionation (SIFT) to enhance the comprehensiveness of proteomic analyses. The combination of differential ion mobility and SIFT, where narrow windows of ∼m/z 100 are acquired in turn, is found particularly advantageous in the analysis of protein digests and typically provided more than 60% gain in identification compared to conventional single-shot LC-MS/MS. The application of this approach is further demonstrated for the analysis of tryptic digests from different colorectal cancer cell lines where the enhanced sensitivity enabled the identification of single amino acid variants that were correlated with the corresponding transcriptomic data sets.


Asunto(s)
Neoplasias del Colon , Proteogenómica , Cromatografía Liquida/métodos , Neoplasias del Colon/genética , Humanos , Iones , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
4.
Anal Chem ; 93(28): 9817-9825, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213903

RESUMEN

High-field asymmetric waveform ion mobility spectrometry (FAIMS) has gained popularity in the proteomics field for its capability to improve mass spectrometry sensitivity and to decrease peptide co-fragmentation. The recent implementation of FAIMS on Tribrid Orbitrap instruments enhanced proteome coverage and increased the precision of quantitative measurements. However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. Proteomic experiments performed on HeLa tryptic digests with the modified mass spectrometer improved signal to noise and reduced interfering ions, resulting in an increase of 42% in peptide identification. FAIMS was also combined with segmented ion fractionation where 100 m/z windows were obtained in turn to further increase the depth of proteome analysis by reducing the proportion of chimeric MS/MS spectra from 50 to 27%. We also demonstrate the application of FAIMS to improve quantitative measurements when using isobaric peptide labeling. FAIMS experiments performed on a two-proteome model revealed that FAIMS Pro provided a 65% improvement in quantification accuracy compared to conventional LC-MS/MS experiments.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Espectrometría de Movilidad Iónica , Iones
5.
Cell Rep Methods ; 3(6): 100511, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426761

RESUMEN

The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.


Asunto(s)
Microfluídica , Neoplasias , Humanos , Espectrometría de Masas/métodos , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Antígenos de Neoplasias
6.
Sci Rep ; 7: 46206, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387371

RESUMEN

O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda