RESUMEN
BACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.
Asunto(s)
Alternaria , Endófitos , Paclitaxel , Taxus , Taxus/microbiología , Paclitaxel/biosíntesis , Endófitos/genética , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/clasificación , Alternaria/genética , Alternaria/metabolismo , Alternaria/clasificación , Alternaria/aislamiento & purificación , Filogenia , Hongos/genética , Hongos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genéticaRESUMEN
PURPOSE: Defocus Incorporated Soft Contact (DISC) lenses, a commonly used type of multifocal lens in clinical practice, may slow down myopia progression by inducing myopic retinal defocus. The purpose of this study was to explore whether the induced defocus across the retina could be affected by visual environments encountered in the real world, such as differences in viewing distance and ambient illuminance. METHODS: In this cross-over trial, 30 myopic adults wore both DISC lenses and single vision contact (SVC) lenses in random order. An open-view Hartmann-Shack scanning wavefront sensor was used to measure defocus at different retinal locations along the horizontal meridian under four experimental conditions: far target (3 m) and near targets (0.33 m) under scotopic (<1 lux) or photopic (~300 lux) conditions. RESULTS: The results showed that DISC lenses induced more myopic retinal defocus than SVC lenses in all conditions (all p < 0.05), except for the scotopic near target. In addition, for DISC lenses, the defocus was greater in the photopic than the scotopic conditions for both the far and near targets (both p < 0.05). CONCLUSION: In conclusion, the retinal defocus induced by these multifocal lenses was dependent on both visual distance and ambient illuminance, indicating that the visual conditions might affect the anti-myopia efficacy of these devices.
Asunto(s)
Lentes de Contacto Hidrofílicos , Estudios Cruzados , Miopía , Humanos , Miopía/fisiopatología , Miopía/terapia , Adulto , Masculino , Femenino , Adulto Joven , Refracción Ocular/fisiología , Agudeza Visual/fisiología , IluminaciónRESUMEN
Epoxide hydrolases catalyze the hydrolysis of both exogenous and endogenous epoxides to the corresponding vicinal diols by adding water. Microsomal and soluble epoxide hydrolase are two main mammalian enzymes that have been intensely characterized. The purpose of this investigation was to develop and validate a proteomics assay allowing the simultaneous quantification of microsomal and soluble epoxide hydrolase in rats. Protein quantification was realized through targeted proteomics using liquid chromatography with tandem mass spectrometry for the determination of trypsin-specific surrogate peptides after digestion. Stable isotope-labeled peptides were used as the internal standards. The chromatography of the surrogate peptides was performed on an Agilent SB C18 column (100 mm × 4.6 mm, 1.8 µm) with gradient elution. Acetonitrile containing 0.1% formic acid and 0.1% formic acid aqueous solution were used as mobile phases. A multiple reaction monitoring method in a positive ionization mode was used for the simultaneous detection of the peptides. The method was validated concerning the specificity, linearity, within-day and between-day accuracy and precision, matrix effect, stability, and digestion efficiency. The developed assay was successfully used to quantify the protein levels of microsomal and soluble epoxide hydrolase in rat liver, kidney, and heart S9 samples.
Asunto(s)
Epóxido Hidrolasas/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Marcaje Isotópico , Riñón/química , Hígado/química , Espectrometría de Masas/métodos , Miocardio/química , Péptidos/análisis , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
BACKGROUND: Atropine, specifically 0.05% eyedrops, has proven effective in slowing myopia progression. This study aims to investigate peripheral refraction (PR) characteristics in myopic children treated with 0.05% atropine eyedrops at different frequencies. METHODS: One hundred thirty-eight myopic children completed this one-year prospective study, randomly assigned to once daily (7/7), twice per week (2/7), or once per week (1/7) groups. Spherical equivalent (SE) and axial length (AL) were measured. PR was assessed using a custom-made Hartmann-Shack wavefront peripheral sensor, covering a visual field of horizontal 60° and vertical 36°. Relative peripheral refraction (RPR) was calculated by subtracting central from peripheral measurements. RESULTS: After one year, SE increased more significantly in the 1/7 group compared to the 7/7 group (P < 0.001) and 2/7 group (P = 0.004); AL elongation was also greater in the 1/7 group compared to the 7/7 group (P < 0.001). In comparison with higher frequency groups, 1/7 group exhibited more myopic PR in the fovea and its vertical superior, inferior, and nasal retina; and less myopic RPR in the periphery retina after one-year (P < 0.05). Additionally, RPR in the 7/7 group demonstrated myopic shift across the entire retina, the 2/7 group in temporal and inferior retina, while the 1/7 group showed a hyperopic shift in the superior retina (P < 0.05). Moreover, myopic shift of RPR in the temporal retina is related to less myopia progression, notably in the 7/7 group (P < 0.05). CONCLUSIONS: Atropine inhibits myopia progression in a frequency-dependent manner. The once-daily group showed the slowest myopia progression but exhibited more myopic shifts in RPR. Additionally, RPR in the temporal retina was related to myopia progression in all groups. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100043506. Registered 21 February 2021, https://www.chictr.org.cn/showproj.html?proj=122214.
RESUMEN
Purpose: To investigate the role of peripheral refraction in children's myopization. Methods: This 2-year study included 214 children (8-15 years old). Refraction across the retina (field of view: 60° × 36°) was measured with a custom-made aberrometer every year. Three datasets were established: dataset 1, 214 subjects from baseline to the first-year visit; dataset 2, 152 subjects from baseline to the second-year visit; and dataset 3, 59 initial emmetropes from baseline to the second-year visit. The baseline refraction of different retina regions was correlated with the central myopic shift, and was compared among groups with different levels of myopic shift. Results: In datasets 1 and 2, the refraction distribution across the retina was significantly different among the subjects who were initially emmetropes but not among those who were initially hyperopic or myopic. Refraction in the central vertical retina, especially in the superior retina (r = -0.5, P < 0.001), was significantly correlated with the myopic shift for emmetropes in that subjects with more relative myopia in the superior retina manifested greater central myopic shifts. In dataset 3, 21 subjects remained emmetropic after 2 years, 15 subjects became myopic at the 1-year visit, and 23 subjects became myopic at the 2-year visit. No difference was found for the relative peripheral refraction in all of the peripheral regions between the stage prior to and after the onset of myopia. Conclusions: Relative myopic defocus in the superior retina could be a predictor of central myopia shift. Changes in relative peripheral refraction are more likely a consequence of myopia progression rather than a cause.
Asunto(s)
Hiperopía , Miopía , Humanos , Niño , Adolescente , Miopía/diagnóstico , Refracción Ocular , Retina , EmetropíaRESUMEN
Peripheral refraction has been studied for decades; however, its detection and description are somehow simplistic and limited. Therefore, their role in visual function and refractive correction, as well as myopia control, is not completely understood. This study aims to establish a database of two-dimensional (2D) peripheral refraction profiles in adults and explore the features for different central refraction values. A group of 479 adult subjects were recruited. Using an open-view Hartmann-Shack scanning wavefront sensor, their right naked eyes were measured. The overall features of the relative peripheral refraction maps showed myopic defocus, slight myopic defocus, and hyperopic defocus in the hyperopic and emmetropic groups, in the mild myopic group, and in other myopic groups, respectively. Defocus deviations with central refraction vary in different regions. The defocus asymmetry between the upper and lower retinas within 16° increased with the increase of central myopia. By characterizing the variation of peripheral defocus with central myopia, these results provide rich information for possible individual corrections and lens design.
RESUMEN
CYP4 enzymes are involved in the metabolism of xenobiotics and endogenous molecules. 20-Hydroxyeicosatetraenoic acid (20-HETE), the arachidonic acid (AA) ω-hydroxylation metabolite catalyzed by CYP4A/4F enzymes, is implicated in various biological functions. The goal of this investigation is to examine the inhibitory effects of components from Salvia miltiorrhiza(Danshen) on AA ω-hydroxylation using recombinant CYP4A11, CYP4F2, CYP4F3B, and microsomal systems. Tanshinone IIA had noncompetitive inhibition on CYP4F3B (Ki = 4.98 µM). Cryptotanshinone (Ki = 6.87 µM) and tanshinone I (Ki = 0.42 µM) had mixed-type inhibition on CYP4A11. Dihydrotanshinone I had mixed-type inhibition on CYP4A11 (Ki = 0.09 µM), and noncompetitive inhibition on CYP4F2 (Ki = 4.25 µM) and CYP4F3B (Ki = 3.08 µM). Salvianolic acid A had competitive inhibition on CYP4A11 (Ki = 19.37 µM), and noncompetitive inhibition on CYP4F2 (Ki = 15.28 µM) and CYP4F3B (Ki = 6.45 µM). Salvianolic acid C had noncompetitive inhibition on CYP4F2 (Ki = 5.70 µM) and CYP4F3B (Ki = 18.64 µM). In human kidney, human liver or rat heart microsomes, 20-HETE formation was significantly inhibited (P < 0.05) by dihydrotanshinone I (5 and 20 µM) and salvianolic acid A (20 and 50 µM). Given that low plasma concentrations of Danshen components after oral administration, Danshen preparations may not play pharmacological roles by inhibiting AA ω-hydroxylases; however, as Danshen components may reach high concentration in human intestine, drugs that have an important pre-systemic metabolism by these CYP4A/4F enzymes should avoid being co-administered with Danshen preparations.
Asunto(s)
Salvia miltiorrhiza , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Furanos , Humanos , Microsomas Hepáticos/metabolismo , Fenantrenos , Quinonas , Ratas , Salvia miltiorrhiza/metabolismoRESUMEN
Purpose: The purpose of this study was to investigate the two-dimensional peripheral refraction in fellow eyes of patients with isomyopia and anisomyopia. Methods: Sixty-eight young adults were recruited, including 25 isomyopes with interocular differences (IODs) of foveal refraction < 1.00 D and 43 anisomyopes with IOD > 1.50 D. Peripheral refraction across an area of the visual field of 60° × 36° with a resolution of 1° was measured using a custom-made Hartmann-Shack wavefront sensor. The retinal area was divided into 3 × 3 zones for comparison between the fellow eyes. Results: There was no difference of refraction in all corresponding zones between the fellow eyes in the isomyopic group (all P > 0.05). The IODs between more myopic (MM) eyes and less myopic (LM) eyes in the anisomyopic group ranged from -1.40 to approximately -2.46 D (all P <0.001), which was flagged in the center and attenuated in peripheral zones by varied magnitudes. In the stratification analysis for different levels of anisomyopia, the nasal retina first presented significant relative hyperopic shifts compared to the center, followed by the temporal retina. In contrast, the superior and inferior periphery only differed from the center when the central IOD was greater than 3.00 D. Conclusions: The two-dimensional peripheral refraction patterns showed a mirror symmetry between the fellow eyes of a patient with isomyopia. However, in the anisomyopic group, peripheral refraction showed significantly relative hyperopic shift when compared with the center and developed with a varied rate in different areas. These findings may indicate an asymmetrical variation in the peripheral refraction patterns during myopia progression.
Asunto(s)
Miopía/fisiopatología , Refracción Ocular/fisiología , Adulto , Anisometropía/fisiopatología , Femenino , Humanos , Masculino , Pruebas de Visión , Campos Visuales , Adulto JovenRESUMEN
OBJECTIVE: To investigate the effect of daphnetin (DAP) combined with insulin-like growth factor 1 (IGF-1) gene transfection on chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in rats. METHODS: Rat ADSCs were isolated and amplified by enzymatic digestion. The third generation ADSCs were treated with IGF-1 gene transfection as experimental group and normal ADSCs as control group. The cells of the two groups were treated with different concentrations of DAP (0, 30, 60, 90 µg/mL), respectively. Cell proliferation was detected by cell counting kit 8 (CCK-8) after cultured for 72 hours. After 14 days, real-time fluorescence quantitative PCR and Western blot were used to detect the mRNA and protein expressions of chondrocyte markers (collagen type â ¡ and Aggrecan) in each group; and toluidine blue staining and collagen type â ¡ immunohistochemical staining were performed. RESULTS: CCK-8 assay showed that with the increase of DAP concentration, the cell absorbance ( A) value of the control group and the experimental group increased gradually ( P<0.05). At the same DAP concentration, the cell A value of the experimental group was significantly higher than that of the control group ( P<0.05). Real-time fluorescence quantitative PCR and Western blot showed that with the increase of DAP concentration, the relative mRNA and protein expressions of collagen type â ¡ and Aggrecan in the control group did not change significantly, and there was no significant difference among the different concentration groups ( P>0.05). But the mRNA and protein expressions of collagen type â ¡ and Aggrecan in the experimental group increased gradually, and the 60 and 90 µg/mL DAP concentration groups were significantly higher than 0 µg/mL DAP concentration group ( P<0.05). At the same DAP concentration, the relative mRNA and protein expressions of collagen type â ¡ and Aggrecan were significantly higher in the experimental group than in the control group ( P<0.05). Toluidine blue staining showed that with the increase of DAP concentration, there was no significant difference in cell staining between the control group and the experimental group. At the same DAP concentration, the cells in the experimental group were slightly darker than those in the control group. Immunohistochemical staining of collagen type â ¡ showed that with the increase of DAP concentration, there was no significant difference in the cytoplasmic brown-yellow coloring of the cells in the control group. The cytoplasmic brown-yellow coloring of the cells in the experimental group gradually deepened, with 60 and 90 µg/mL DAP concentration groups significantly deeper than 0 µg/mL DAP concentration group. At the same DAP concentration, the color of the cells in the experimental group was significantly deeper than that in the control group. CONCLUSION: DAP can promote the proliferation of ADSCs in rats. The differentiation of ADSCs into chondrocytes induced by DAP alone was slightly, but DAP combined with IGF-1 gene transfection has obvious synergistic effect to promote chondrogenic differentiation of ADSCs.