Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Nucleic Acids Res ; 52(6): 3406-3418, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412313

RESUMEN

RNA helicases function as versatile enzymes primarily responsible for remodeling RNA secondary structures and organizing ribonucleoprotein complexes. In our study, we conducted a systematic analysis of the helicase-related activities of Escherichia coli HrpA and presented the structures of both its apo form and its complex bound with both conventional and non-canonical DNAs. Our findings reveal that HrpA exhibits NTP hydrolysis activity and binds to ssDNA and ssRNA in distinct sequence-dependent manners. While the helicase core plays an essential role in unwinding RNA/RNA and RNA/DNA duplexes, the N-terminal extension in HrpA, consisting of three helices referred to as the APHB domain, is crucial for ssDNA binding and RNA/DNA duplex unwinding. Importantly, the APHB domain is implicated in binding to non-canonical DNA structures such as G-quadruplex and i-motif, and this report presents the first solved i-motif-helicase complex. This research not only provides comprehensive insights into the multifaceted roles of HrpA as an RNA helicase but also establishes a foundation for further investigations into the recognition and functional implications of i-motif DNA structures in various biological processes.


Asunto(s)
ADN Helicasas , Proteínas de Escherichia coli , Secuencia de Aminoácidos , ADN/química , ADN Helicasas/metabolismo , ADN de Cadena Simple/genética , Escherichia coli/metabolismo , ARN/química , ARN Helicasas/genética , Proteínas de Escherichia coli/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(23): e2116462119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658074

RESUMEN

Helicases are multifunctional motor proteins with the primary task of separating nucleic acid duplexes. These enzymes often exist in distinct oligomeric forms and play essential roles during nucleic acid metabolism. Whether there is a correlation between their oligomeric state and cellular function, and how helicases effectively perform functional switching remains enigmatic. Here, we address these questions using a combined single-molecule approach and Bloom syndrome helicase (BLM). By examining the head-on collision of two BLM-mediated DNA unwinding forks, we find that two groups of BLM, upon fork convergence, promptly oligomerize across the fork junctions and tightly bridge two independent single-stranded (ss) DNA molecules that were newly generated by the unwinding BLMs. This protein oligomerization is mediated by the helicase and RNase D C-terminal (HRDC) domain of BLM and can sustain a disruptive force of up to 300 pN. Strikingly, onsite BLM oligomerization gives rise to an immediate transition of their helicase activities, from unwinding dsDNA to translocating along ssDNA at exceedingly fast rates, thus allowing for the efficient displacement of ssDNA-binding proteins, such as RPA and RAD51. These findings uncover an activity transition pathway for helicases and help to explain how BLM plays both pro- and anti-recombination roles in the maintenance of genome stability.


Asunto(s)
ADN de Cadena Simple , RecQ Helicasas , ADN/metabolismo , ADN de Cadena Simple/genética , Recombinación Homóloga , Microscopía Confocal , Pinzas Ópticas , RecQ Helicasas/metabolismo
3.
J Biol Chem ; 299(5): 104592, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36894019

RESUMEN

Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development, and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with ADP at 3.22 Å and 3.05 Å resolutions, respectively. The structures of the ADP-bound post-hydrolysis state and apo-state demonstrate the conformational changes that occur when the nucleotides are released. Our results showed that the helicase core of Dbp2 shifted between open and closed conformation in solution but the unwinding activity was hindered when the helicase core was restricted to a single conformation. A small-angle X-ray scattering experiment showed that the disordered amino (N) tail and carboxy (C) tails are flexible in solution. Truncation mutations confirmed that the terminal tails were critical for the nucleic acid binding, ATPase, and unwinding activities, with the C-tail being exclusively responsible for the annealing activity. Furthermore, we labeled the terminal tails to observe the conformational changes between the disordered tails and the helicase core upon binding nucleic acid substrates. Specifically, we found that the nonstructural terminal tails bind to RNA substrates and tether them to the helicase core domain, thereby conferring full helicase activities to the Dbp2 protein. This distinct structural characteristic provides new insight into the mechanism of DEAD-box RNA helicases.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Conformación Molecular , ADN Helicasas/metabolismo
4.
EMBO Rep ; 23(7): e53874, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35736675

RESUMEN

G-quadruplexes (G4s) are unusual stable DNA structures that cause genomic instability. To overcome the potential barriers formed by G4s, cells have evolved different families of proteins that unfold G4s. Pif1 is a DNA helicase from superfamily 1 (SF1) conserved from bacteria to humans with high G4-unwinding activity. Here, we present the first X-ray crystal structure of the Thermus oshimai Pif1 (ToPif1) complexed with a G4. Our structure reveals that ToPif1 recognizes the entire native G4 via a cluster of amino acids at domains 1B/2B which constitute a G4-Recognizing Surface (GRS). The overall structure of the G4 maintains its three-layered propeller-type G4 topology, without significant reorganization of G-tetrads upon protein binding. The three G-tetrads in G4 are recognized by GRS residues mainly through electrostatic, ionic interactions, and hydrogen bonds formed between the GRS residues and the ribose-phosphate backbone. Compared with previously solved structures of SF2 helicases in complex with G4, our structure reveals how helicases from distinct superfamilies adopt different strategies for recognizing and unfolding G4s.


Asunto(s)
G-Cuádruplex , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Inestabilidad Genómica , Humanos , Thermus
5.
Nucleic Acids Res ; 49(8): 4768-4781, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856462

RESUMEN

Telomerase plays critical roles in cellular aging, in the emergence and/or development of cancer, and in the capacity for stem-cell renewal, consists of a catalytic telomerase reverse transcriptase (TERT) and a template-encoding RNA (TER). TERs from diverse organisms contain two conserved structural elements: the template-pseudoknot (T-PK) and a helical three-way junction (TWJ). Species-specific features of the structure and function of telomerase make obtaining a more in-depth understanding of the molecular mechanism of telomerase particularly important. Here, we report the first structural studies of N-terminally truncated TERTs from Candida albicans and Candida tropicalis in apo form and complexed with their respective TWJs in several conformations. We found that Candida TERT proteins perform only one round of telomere addition in the presence or absence of PK/TWJ and display standard reverse transcriptase activity. The C-terminal domain adopts at least two extreme conformations and undergoes conformational interconversion, which regulates the catalytic activity. Most importantly, we identified a conserved tertiary structural motif, called the U-motif, which interacts with the reverse transcriptase domain and is crucial for catalytic activity. Together these results shed new light on the structure and mechanics of fungal TERTs, which show common TERT characteristics, but also display species-specific features.


Asunto(s)
Secuencias de Aminoácidos , Candida albicans/química , Candida tropicalis/química , Dominio Catalítico , Telomerasa/química , Secuencias de Aminoácidos/genética , Candida albicans/enzimología , Candida tropicalis/enzimología , Catálisis , Dominio Catalítico/genética , Cromatografía en Gel , Cristalografía por Rayos X , Dispersión Dinámica de Luz , Escherichia coli/metabolismo , Técnicas In Vitro , Modelos Moleculares , Mutación , Proteínas Recombinantes , Telomerasa/genética
6.
Nucleic Acids Res ; 49(7): 4129-4143, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784404

RESUMEN

Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.


Asunto(s)
Proteínas Bacterianas , ADN Helicasas , ADN de Cadena Simple/metabolismo , Thermus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína
7.
World J Microbiol Biotechnol ; 39(12): 340, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821760

RESUMEN

Fusarium graminearum, a devastating fungal pathogen, is the main pathogen of Fusarium head blight (FHB) in wheat globally; it results in significant yield loss and mycotoxin contamination that severely threatens global wheat production and food safety. However, despite ongoing efforts, controlling this pathogen still remains a major challenge. Surfactin, primarily synthesized by Bacillus sp. via non-ribosomal peptide synthetases, exhibits potent surfactant and antibacterial properties, but its antifungal mechanism has yet to be fully elucidated. We found that the EC50 of surfactin against hyphal growth of F. graminearum was 102.1 µg/mL, and control efficacy against wheat FHB under field conditions achieved 86.38% in wheat cultivar Huaimai 40 and 81.60% in wheat cultivar Zhoumai 36, indicating that surfactin has potential antifungal activity against F. graminearum. Accumulated intracellular ROS, decreased mitochondrial membrane potential (MMP), activated metacaspase activity and condensed chromatin, were induced by surfactin in F. graminearum hyphae, suggesting that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Furthermore, accumulated intracellular ROS was evidenced to act as a key mediator of surfactin-induced apoptosis. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that surfactin induces caspase-independent apoptosis in F. graminearum. Collectively, this study provides evidence that surfactin induces a ROS-mediated mitochondrial apoptosis in F. graminearum hyphae, and may exert its antifungal activity against F. graminearum by activating apoptosis. This study demonstrates the potential of surfactin as an antifungal agent for FHB biocontrol, provides a new perspective on the antifungal mechanism of surfactin against filamentous fungi, and contributes to the application of surfactin-producing microbes in the biocontrol of plant diseases.


Asunto(s)
Antifúngicos , Fusarium , Antifúngicos/farmacología , Antifúngicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Caspasas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
8.
Entropy (Basel) ; 25(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190470

RESUMEN

With its lossless properties, zero-watermarking has attracted a lot of attention in the field of copyright protection for vector maps. However, the common zero-watermarking algorithm puts too much emphasis on mining for global features, making it vulnerable to cropping attacks, and the robustness is not comprehensive enough. This study provides a vector map zero-watermarking scheme that utilizes spatial statistical information and frequency domain transformation methods in an effort to solve the aforementioned issue. In order to make the scheme more resistant to cropping and compression, it is constructed on the basis of feature point extraction and point constraint blocking of the original vector map. Within each sub-block, feature points are used to build constraint Delaunay triangulation networks (CDTN), and the angular values within the triangle networks are then extracted as spatial statistics. The angle value sequence is further transformed by discrete Fourier transform (DFT), and the binarized phase sequence is used as the final feature information to build a zero watermark by executing an exclusive disjunction operation with the encrypted copyright watermark image, both of which contribute to the scheme's robustness and security. The results of the attack experiments show that the proposed vector map zero-watermarking can restore identifiable copyright images under common geometric attacks, cropping attacks, and coordinate system transformations, demonstrating a high level of robustness. The theoretical basis for the robustness of this watermarking scheme is the stability of CDTN and the geometric invariance of DFT coefficients, and both theory and experiment validate the method's validity.

9.
Biochem Biophys Res Commun ; 636(Pt 1): 17-24, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332478

RESUMEN

Exonucleases are often found associated with polymerase or helicase domains in the same enzyme or can function as autonomous entities to maintain genome stability. Here, we uncovered Chaetomium thermophilum RecQ family proteins that also have exonuclease activity in addition to their main helicase function. The novel exonuclease activity is separate from the helical core domain and coexists with the latter two enzymatic activities on the same polypeptide. The CtRecQ121-366 exonuclease region performs independently as an exonuclease. We describe its catalytic mechanism and biological characteristics. We demonstrate unequivocally that CtRecQ121-366 exclusively displays exonuclease activity and that this activity has a 3'-5' polarity that can both hydrolyze ssDNA and cleave dsDNA substrates. The hydrolytic activity of majority exonuclease is driven by bimetal ions, and this appears to be the case for the CtRecQ121-366 exonuclease as well. Additionally, the maximum activity of CtRecQ121-366 was observed at pH 8.0-9.0, low salt with Mg2+. The two helices in the structure, a6 and a7, play significant roles in the execution by anticipating their shape and changing essential amino acids.


Asunto(s)
Chaetomium , Exonucleasas , Exonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Helicasa del Síndrome de Werner/metabolismo , RecQ Helicasas , Chaetomium/metabolismo
10.
Biochem Biophys Res Commun ; 634: 182-188, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36244117

RESUMEN

G-quadruplexes (G4s) are important in regulating DNA replication, repair and RNA transcription through interactions with specialized proteins. Dbp2 has been identified as a G4 DNA binding protein from Saccharomyces cerevisiae cell lysates. The majority of G4 motifs in Saccharomyces cerevisiae display 5-50 nt loops, only a few have 1-2 nt loops. Human DDX5 could unfold MycG4 DNA, whether Dbp2 also participates in remodeling G4 motifs with short loops in Saccharomyces cerevisiae remains elusive. Here we find that Dbp2 prefers G-rich substrates and binds MycG4 with a high affinity. Dbp2 possesses a dual function for different conformations of MycG4, destabilizing the folded MycG4 and inducing further folding of the unfolded MycG4. Similarly, DDX5 can unfold MycG4, but it exhibits a weaker MycG4 folding-promoting activity relative to Dbp2. Furthermore, Dbp2 facilitates DNA annealing activity in the absence of ATP, suggesting that Dbp2 can work on DNA substrates and possibly participate in DNA metabolism. Our results demonstrate that Dbp2 plays an important role in regulating the folding and unfolding activities of MycG4.


Asunto(s)
G-Cuádruplex , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Helicasas DEAD-box/metabolismo , ADN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
EMBO Rep ; 21(10): e50184, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32790142

RESUMEN

Staphylococcus aureus Cas9 (SaCas9) is an RNA-guided endonuclease that targets complementary DNA adjacent to a protospacer adjacent motif (PAM) for cleavage. Its small size facilitates in vivo delivery for genome editing in various organisms. Herein, using single-molecule and ensemble approaches, we systemically study the mechanism of SaCas9 underlying its interplay with DNA. We find that the DNA binding and cleavage of SaCas9 require complementarities of 6- and 18-bp of PAM-proximal DNA with guide RNA, respectively. These activities are mediated by two steady interactions among the ternary complex, one of which is located approximately 6 bp from the PAM and beyond the apparent footprint of SaCas9 on DNA. Notably, the other interaction within the protospacer is significantly strong and thus poses DNA-bound SaCas9 a persistent block to DNA-tracking motors. Intriguingly, after cleavage, SaCas9 autonomously releases the PAM-distal DNA while retaining binding to the PAM. This partial DNA release immediately abolishes its strong interaction with the protospacer DNA and consequently promotes its subsequent dissociation from the PAM. Overall, these data provide a dynamic understanding of SaCas9 and instruct its effective applications.


Asunto(s)
Sistemas CRISPR-Cas , Staphylococcus aureus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas/genética , ADN/genética , Trastornos Disociativos , Edición Génica , Humanos , ARN Guía de Kinetoplastida/genética , Staphylococcus aureus/genética
12.
Cell Mol Life Sci ; 78(19-20): 6557-6583, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34459951

RESUMEN

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.


Asunto(s)
ADN/genética , Animales , Replicación del ADN/genética , Diseño de Fármacos , Epigénesis Genética/genética , G-Cuádruplex , Humanos , Telómero/genética , Transcripción Genética/genética
13.
World J Surg Oncol ; 20(1): 322, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171617

RESUMEN

BACKGROUND: Soft tissue sarcoma (STS) is a malignant tumor of highly heterogeneous mesenchymal origin. STS has a biological pattern and clinical transformation with localized invasive growth and is susceptible to hematogenous metastasis. Local therapeutic strategies may treat recurrent and oligometastatic STS, including surgery and radiation therapy. This study aimed to evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) for recurrent and oligometastatic STS. METHODS: We retrospectively analyzed 37 recurrent and oligometastatic STS patients with 58 lesions treated with SBRT from 2009 to 2019 at our institution. Oligometastatic is defined as metastatic lesions less than or equal to 3. The primary endpoint was local control (LC); secondary endpoints were survival and toxicity. RESULTS: The median follow-up was 21.0 months (3.0 to 125.0 months). Among 37 patients, 18 were recurrent patients, and 19 were oligometastatic patients. Median LC was 25.0 months (95% CI 20.0-45.0). The 1-, 2-, and 3-year LC rates were 80.2%, 58.3%, and 46.6%, respectively. Median overall survival (OS) was 24.0 months (95% CI 13.0-28.0), and the survival rates after SBRT were 71.5%, 40.0%, and 29.1% at 1, 2, and 3-year, respectively. Median progression-free survival (PFS) was 10.0 months (95% CI 8.0-15.0 months), PFS rate after SBRT was 43.6%, 26.8%, and 18.4% at 1, 2, and 3 years, respectively. Late grade 3 radiation dermatitis was observed in one patient (2.7%). Using univariate and multivariate COX analysis, better OS, PFS, and LC were obtained in the histologic grade 1(G1) group, and tumor size and a number of lesions influenced LC. CONCLUSIONS: SBRT is a safe and effective treatment for patients with recurrent and oligometastatic STS. Histological grade influences local control and survival. SBRT may be a promising treatment option for recurrent and oligometastatic STS.


Asunto(s)
Radiocirugia , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/radioterapia , Supervivencia sin Progresión , Radiocirugia/efectos adversos , Estudios Retrospectivos , Sarcoma/patología , Sarcoma/radioterapia , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/radioterapia , Resultado del Tratamiento
14.
Angew Chem Int Ed Engl ; 61(39): e202209463, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35922882

RESUMEN

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited. Here, we demonstrate that BLM possesses the intrinsic ability for phase separation and can co-phase separate with ssDNA to form dynamically arrested protein/ssDNA co-condensates. The introduction of ATP potentiates the capability of BLM to condense on ssDNA, which further promotes the compression of ssDNA against a resistive force of up to 60 piconewtons. Moreover, BLM is also capable of condensing replication protein A (RPA)- or RAD51-coated ssDNA, before which it generates naked ssDNA by dismantling these ssDNA-binding proteins. Overall, our findings identify an unexpected characteristic of a DNA helicase and provide a new angle of protein/ssDNA co-condensation for understanding the genomic instability caused by BLM overexpression under diseased conditions.


Asunto(s)
Síndrome de Bloom , RecQ Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Síndrome de Bloom/genética , ADN , Reparación del ADN , ADN de Cadena Simple , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
15.
J Biol Chem ; 295(51): 17646-17658, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454004

RESUMEN

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.


Asunto(s)
ADN/metabolismo , Escherichia coli/enzimología , G-Cuádruplex , RecQ Helicasas/metabolismo , Reparación del ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , RecQ Helicasas/química , RecQ Helicasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
16.
Biochem Biophys Res Commun ; 542: 29-33, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33485211

RESUMEN

Aging has been considered a phenomenon that can be only applied to cells or organisms. Here, we show that RecQ helicase from E. coli displays an aging phenomenon: this macromolecular motor loses its structure and function after hydrolyzing a certain number of ATP molecules. The aging process was only triggered by repeated catalytic cycles. These observations lead to a new concept: macromolecule aging.

17.
Biochem Biophys Res Commun ; 567: 190-194, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34166917

RESUMEN

Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1368-883) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding. Although CaPif1 shares structural similarities with Saccharomyces cerevisiae Pif1, CaPif1 can contact the thymidine bases of DNA by hydrogen bonds, whereas ScPif1 cannot. More importantly, the crosslinking and mutant experiments have demonstrated that the conformational change of domain 2B is necessary for CaPif1 to unwind dsDNA. These findings contribute to further the understanding of the unwinding mechanism of Pif1.


Asunto(s)
Candida albicans/metabolismo , ADN Helicasas/metabolismo , Proteínas Fúngicas/metabolismo , Adenosina Trifosfato/metabolismo , Candida albicans/química , Candidiasis/microbiología , Cristalografía por Rayos X , ADN/metabolismo , ADN Helicasas/química , ADN de Cadena Simple/metabolismo , Proteínas Fúngicas/química , Humanos , Modelos Moleculares , Conformación Proteica
18.
Biochem J ; 477(2): 445-458, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31808794

RESUMEN

The neuroblastoma breakpoint family (NBPF) consists of 24 members that play an important role in neuroblastoma and other cancers. NBPF is an evolutionarily recent gene family that encodes several repeats of Olduvai domain and an abundant N-terminal region. The function and biochemical properties of both Olduvai domain and the N-terminal region remain enigmatic. Human NBPF15 encodes a 670 AA protein consisting of six clades of Olduvai domains. In this study, we synthesized and expressed full-length NBPF15, and purified a range of NBPF15 truncations which were analyzed using dynamic light scattering (DLS), superdex200 (S200), small-angle X-ray scattering (SAXS), far-UV circular dichroism (CD) spectroscopy, transmission electron microscope (TEM), and crystallography. We found that proteins containing both the N-terminal region and Olduvai domain are heterogeneous with multiple types of aggregates, and some of them underwent a liquid-to-solid phase transition, probably because of the entanglement within the N-terminal coiled-coil. Proteins that contain only the Olduvai domain are homogeneous extended monomers, and those with the conserved clade 1 (CON1) have manifested a tendency to crystallize. We suggest that the entanglements between the mosaic disorder-ordered segments in NBPF15 N terminus have triggered the multiple types of aggregates and phase transition of NBPF15 proteins, which could be associated with Olduvai-related cognitive dysfunction diseases.


Asunto(s)
Disfunción Cognitiva/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Agregado de Proteínas/genética , Dicroismo Circular , Disfunción Cognitiva/patología , Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Microscopía Electrónica de Transmisión , Transición de Fase , Dominios Proteicos/genética , Secuencias Repetitivas de Aminoácido/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
19.
J Biol Chem ; 294(38): 13915-13927, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31350334

RESUMEN

Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein and has essential roles in genome maintenance. RPA binds to ssDNA through multiple modes, and recent studies have suggested that the RPA-ssDNA interaction is dynamic. However, how RPA alternates between different binding modes and modifies ssDNA structures in this dynamic interaction remains unknown. Here, we used single-molecule FRET to systematically investigate the interaction between human RPA and ssDNA. We show that RPA can adopt different types of binding complexes with ssDNAs of different lengths, leading to the straightening or bending of the ssDNAs, depending on both the length and structure of the ssDNA substrate and the RPA concentration. Importantly, we noted that some of the complexes are highly dynamic, whereas others appear relatively static. On the basis of the above observations, we propose a model explaining how RPA dynamically engages with ssDNA. Of note, fluorescence anisotropy indicated that RPA can also associate with RNA but with a lower binding affinity than with ssDNA. At the single-molecule level, we observed that RPA is undergoing rapid and repetitive associations with and dissociation from the RNA. This study may provide new insights into the rich dynamics of RPA binding to ssDNA and RNA.


Asunto(s)
ADN de Cadena Simple/metabolismo , ARN/química , Proteína de Replicación A/metabolismo , Cromatografía en Gel , ADN de Cadena Simple/química , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Unión Proteica , ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteína de Replicación A/química , Proteína de Replicación A/genética
20.
J Biol Chem ; 294(1): 142-156, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30425099

RESUMEN

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a family of plant-specific transcription factors harboring a conserved Lateral Organ Boundaries (LOB) domain, are regulators of plant organ development. Recent studies have unraveled additional pivotal roles of the LBD protein family beyond defining lateral organ boundaries, such as pollen development and nitrogen metabolism. The structural basis for the molecular network of LBD-dependent processes remains to be deciphered. Here, we solved the first structure of the homodimeric LOB domain of Ramosa2 from wheat (TtRa2LD) to 1.9 Å resolution. Our crystal structure reveals structural features shared with other zinc-finger transcriptional factors, as well as some features unique to LBD proteins. Formation of the TtRa2LD homodimer relied on hydrophobic interactions of its coiled-coil motifs. Several specific motifs/domains of the LBD protein were also involved in maintaining its overall conformation. The intricate assembly within and between the monomers determined the precise spatial configuration of the two zinc fingers that recognize palindromic DNA sequences. Biochemical, molecular modeling, and small-angle X-ray scattering experiments indicated that dimerization is important for cooperative DNA binding and discrimination of palindromic DNA through a molecular calipers mechanism. Along with previously published data, this study enables us to establish an atomic-scale mechanistic model for LBD proteins as transcriptional regulators in plants.


Asunto(s)
Proteínas de Plantas/química , Factores de Transcripción/química , Triticum/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Plantas/genética , Dominios Proteicos , Factores de Transcripción/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda