Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(12): e2305778, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948356

RESUMEN

The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.

2.
Nanotechnology ; 27(7): 075602, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26775658

RESUMEN

This study presents a new ultrathin SiC structure prepared by a catalyst free carbothermal method and post-sonication process. We have found that merging ultra-light 3D graphene foam and SiO together at high temperature leads to the formation of a complex SiC structure consisting of 3D SiC foam covered with traditional 1D nanowires. Upon breaking off, the 3D SiC was confirmed to be made from 2D nanosheets. The resulting novel 2D SiC nanosheets/nanoflakes were thoroughly investigated by using optical microscope, SEM, EDS, TEM, STEM, AFM, and Raman, which verified the highly crystallised structure feature. AFM results revealed an average thickness of 2-3 nm and average size of 2 µm for the flakes. This new SiC structure could not only actualise SiC usage for nano-electronic devices but is also expected to open new applications as well.

3.
Nanotechnology ; 27(22): 22LT01, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27109699

RESUMEN

Black-colored ZnO nanowires have been prepared in a metal-organic chemical vapor deposition system by employing a relatively low growth temperature and oxygen-deficient conditions. X-ray photoelectron spectroscopy reveals the incorporation of carbon into the nanowires. The photocatalytic hydrogen evolution activity of the black-colored ZnO nanowires is over 2.5 times larger than that of the pristine ZnO nanowires under simulated solar illumination conditions, and the enhanced photocatalytic activity can be attributed to the higher absorption of visible light by the black color and better carrier separation at the ZnO/carbon interface.

4.
Nanotechnology ; 25(32): 325701, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25053713

RESUMEN

Inorganic fullerene-like WS2 nanoparticle- (IF-WS2) reinforced nylon 12 nanocomposites have been prepared through effective ultrasonic mixing without using any surfactant, followed by molding at 220 °C. Morphological characterizations using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and microcomputed tomography (micro-CT) have revealed the excellent dispersion of IF-WS2 nanoparticles in the nylon 12 matrix. X-ray diffraction (XRD) analyses have confirmed that a phase transition from α'-phase to a more stable γ-phase took place during the sintering of nylon 12, regardless of the amount of IF-WS2 added to the matrix. At a very low IF-WS2 content of 2 wt%, the tensile strength and bending strength of the composites increased slightly by 27% and 28%, respectively. However, the toughness dramatically improved by 185% and 148% at IF-WS2 additions of 0.25 and 0.5 wt%, respectively, when compared to the neat nylon 12. It is believed that such improvements should mainly be attributed to the well-dispersed IF-WS2 within the matrix. The vastly improved toughness suggests that the resulting polymer nanocomposites could be promising for structural and high-performance impact applications.

5.
Nanoscale Adv ; 6(12): 3169-3180, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868827

RESUMEN

The development of effective bifunctional electrocatalysts that can realize water splitting to produce oxygen and hydrogen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a great challenge to be addressed. Herein, we report a simple and versatile approach to fabricate bifunctional OER and HER electrocatalysts derived from ZIF67/MXene hybrids via sulfurization of the precursors in hydrogen sulfide gas atmosphere at high temperatures. The as-prepared CoS@C/MXene nanocomposites were characterized using a series of technologies including X-ray diffraction, gas sorption, scanning electronic microscopy, transmission electronic microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The synthesized CoS@C/MXene composites are electrocatalytically active in both HER and OER, and the CSMX-800 composite displayed the highest electrocatalytic performance towards OER and HER among all the produced samples. CSMX-800 exhibited overpotentials of 257 mV at 10 mA cm-2 for OER and 270 mV at 10 mA cm-2 for HER. Moreover, it also possesses small Tafel slope values of 93 mV dec-1 and 103 mV dec-1 for OER and HER, respectively. The enhanced electrocatalytic performance of the MXene-containing composites is due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that CoS@C/MXene based electrocatalyst has great potential in electrochemical water splitting for hydrogen production, thus reducing carbon emissions and protecting the environment.

6.
Nanoscale ; 14(12): 4726-4739, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35266942

RESUMEN

The increased call for carbon neutrality by 2050 makes it compelling to develop emission-free alternative energy sources. Green hydrogen produced from water electrolyzers using renewable electricity is of great importance, and the development of efficient transition-metal-based materials for hydrogen production by electrolysis is highly desirable. In this report, a new approach to produce defect-rich and ultra-fine bimetallic Co-Mo sulfides/carbon composites from polyoxometalates@ZIF-67@polydopamine nanocubes via carbonization/sulfurization, which are highly active for hydrogen and oxygen evolution reactions (HER and OER), have been successfully developed. The coating of polydopamine (PDA) on the surface of the acid-sensitive ZIF-67 cubes can prevent the over-dissociation of ZIF-67 caused by the encapsulated phosphomolybdic acid (PMA) etching through PDA chelating with the PMA molecules. Meanwhile, the partially dissociated Co2+ from ZIF-67 can be captured by the coated PDA via chelation, resulting in more evenly dispersed active sites throughout the heterogeneous composite after pyrolysis. The optimized bimetallic composite CoMoS-600 exhibits a prominent improvement in HER (with an overpotential of -0.235 V vs. RHE at a current density of 10 mA cm-2) and OER performance (with an overpotential of 0.350 V vs. RHE at a current density of 10 mA cm-2), due to the synergistic effect of ultra-fine defect-rich Co-Mo-S nanoparticle active sites and N,S-codoped porous carbons in the composites. Moreover, this synthesis approach can be readily expanded to other acidic polyoxometalates to produce HER and OER active bimetallic Co-W sulfide/carbon composites by replacing PMA with phosphotungstic acid. This new synthesis strategy to modify acid-sensitive ZIFs with selected compounds offers an alternative approach to develop novel transition metal sulfide/carbon composites for various applications.

7.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35564175

RESUMEN

The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylidene fluoride (PVDF) fibers to serve as the artificial tip links, for long-term hearing-aid-device development based on their piezoelectric properties. We have shown that the electrospun PVDF-fiber web, consisting of fibers ranging from 30-220 nm in diameter with high ß-phase content, possesses the high piezoresponse of 170 mV. Analyses based on combined characterization methods including SEM, TEM, XRD, FTIR, Raman, DSC, XPS, PFM and piezoelectricity have confirmed that an optimized value of 15 wt.% PVDF could act as an effective candidate for a tip-link connector in a vibration-frequency prototype. Based on this easily reproducible electrospinning technique and the multifunctionalities of the resulting PVDF fibers, this fundamental study may shed light on the bio-inspired design of artificial, self-powered, high performance, hair-cell-like sensors in cochlea to tackle the hearing loss issue.

8.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364635

RESUMEN

Converting carbon dioxide into high-value-added formic acid as a basic raw material for the chemical industry via an electrochemical process under ambient conditions not only alleviates greenhouse gas effects but also contributes to effective carbon cycles. Unfortunately, the most commonly used Pd-based catalysts can be easily poisoned by the in situ formed minor byproduct CO during the carbon dioxide reduction reaction (CRR) process. Herein, we report a facile method to synthesize highly uniformed PdAg alloys with tunable morphologies and electrocatalytic performance via a simple liquid synthesis approach. By tuning the molar ratio of the Ag+ and Pd2+ precursors, the morphologies, composition, and electrocatalytic activities of the obtained materials were well-regulated, which was characterized by TEM, XPS, XRD, as well as electrocatalytic measurements. The CRR results showed that the as-obtained Pd3Ag exhibited the highest performance among the five samples, with a faradic efficient (FE) of 96% for formic acid at -0.2 V (vs. reference hydrogen electrode (RHE)) and superior stability without current density decrease. The enhanced ability to adsorb and activate CO2 molecules, higher resistance to CO, and a faster electronic transfer speed resulting from the alloyed PdAg nanostructure worked together to make great contributions to the improvement of the CRR performance. These findings may provide a new feasible route toward the rational design and synthesis of alloy catalysts with high stability and selectivity for clean energy storage and conversion in the future.

9.
Adv Sci (Weinh) ; 8(14): e2100625, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032017

RESUMEN

Solar energy is a key sustainable energy resource, and materials with optimal properties are essential for efficient solar energy-driven applications in photocatalysis. Metal-organic frameworks (MOFs) are excellent platforms to generate different nanocomposites comprising metals, oxides, chalcogenides, phosphides, or carbides embedded in porous carbon matrix. These MOF derived nanocomposites offer symbiosis of properties like high crystallinities, inherited morphologies, controllable dimensions, and tunable textural properties. Particularly, adjustable energy band positions achieved by in situ tailored self/external doping and controllable surface functionalities make these nanocomposites promising photocatalysts. Despite some progress in this field, fundamental questions remain to be addressed to further understand the relationship between the structures, properties, and photocatalytic performance of nanocomposites. In this review, different synthesis approaches including self-template and external-template methods to produce MOF derived nanocomposites with various dimensions (0D, 1D, 2D, or 3D), morphologies, chemical compositions, energy bandgaps, and surface functionalities are comprehensively summarized and analyzed. The state-of-the-art progress in the applications of MOF derived nanocomposites in photocatalytic water splitting for H2 generation, photodegradation of organic pollutants, and photocatalytic CO2 reduction are systemically reviewed. The relationships between the nanocomposite properties and their photocatalytic performance are highlighted, and the perspectives of MOF derived nanocomposites for photocatalytic applications are also discussed.

10.
J Am Chem Soc ; 131(45): 16493-9, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19852461

RESUMEN

The influence of nitrogen doping on the hydrogen uptake and storage capacity of high surface area carbon materials is presented in this report. To generate suitable study materials, we have exploited the relationship between synthesis conditions and textural properties of zeolite-templated carbons to generate a range of high surface area carbons with similar pore size distribution but which are either N-doped or N-free. For N-doped carbons, the nitrogen content was kept within a narrow range of between 4.7 and 7.7 wt %. The carbon materials, irrespective of whether they were doped or not, exhibited high surface area (1900-3700 m(2)/g) and pore volume (0.99 and 1.88 cm(3)/g), a micropore surface area of 1500-2800 m(2)/g, and a micropore volume of 0.65-1.24 cm(3)/g. The hydrogen uptake varied between 4.1 and 6.9 wt %. We present experimental data that indicates that the effect of N-doping on hydrogen uptake is only apparent when related to the surface area and pore volume associated with micropores rather than total porosity. Furthermore, by considering the isosteric heat of hydrogen adsorption and excess hydrogen uptake on N-free or N-doped carbons, it is shown that N-doping can be beneficial at lower coverage (low hydrogen uptake) but is detrimental at higher coverage (higher hydrogen uptake). The findings are consistent with previous theoretical predictions on the effect of N-doping of carbon on hydrogen uptake. The findings, therefore, add new insights that are useful for the development of carbon materials with enhanced hydrogen storage capacity.

11.
Sci Rep ; 7(1): 5266, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706250

RESUMEN

A series of nanocomposites of cobalt embedded in N-doped nanoporous carbons, carbon nanotubes or hollow carbon onions have been synthesized by a one-step carbonization of metal-organic-framework ZIF-67. The effect of the carbonization temperature on the structural evolution of the resulting nanocomposites has been investigated in detail. Among the as-synthesized materials, the cobalt/nanoporous N-doped carbon composites have demonstrated excellent electrocatalytic activities and durability towards oxygen reduction reaction in alkaline medium. Compared to the benchmark Pt/C catalyst, the optimized Co@C-800 (carbonized at 800 °C) exhibited high oxygen reduction reaction activity with an onset potential of 0.92 V, and a half-wave potential of 0.82 V. Moreover, the optimized Co@C-800 also showed enhanced electrocatalytic activity towards oxygen evolution reaction from water splitting, with a low onset potential of 1.43 V and a potential of 1.61 V at 10 mA cm-2 current density. This work offered a simple solution to develop metal-organic-framework-derived materials for highly efficient electrochemical applications.

12.
Materials (Basel) ; 10(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28772699

RESUMEN

Graphene-based materials with a three-dimensional (3D) framework have been investigated for a variety of biomedical applications because of their 3D morphology, excellent physiochemical properties, volume stability, and their controllable degradation rate. Current knowledge on the toxicological implications and bioavailability of graphene foam (GF) has major uncertainties surrounding the fate and behavior of GF in exposed environments. Bioavailability, uptake, and partitioning could have potential effects on the behavior of GF in living organisms, which has not yet been investigated. Here, we report a pilot toxicology study on 3D GF in common carps. Our results showed that GF did not show any noticeable toxicity in common carps, and the antioxidant enzymatic activities, biochemical and blood parameters persisted within the standard series. Further histological imaging revealed that GF remained within liver and kidney macrophages for 7 days without showing obvious toxicity. An in vivo study also demonstrated a direct interaction between GF and biological systems, verifying its eco-friendly nature and high biocompatibility.

13.
ACS Nano ; 11(8): 8114-8121, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28777543

RESUMEN

Nanocomposites fabricated using the toughest caged inorganic fullerene WS2 (IF-WS2) nanoparticles could offer ultimate protection via absorbing shockwaves; however, if the IF-WS2 nanomaterials really work, how they behave and what they experience within the nanocomposites at the right moment of impact have never been investigated effectively, due to the limitations of existing investigation techniques that are unable to elucidate the true characteristics of high-speed impacts in composites. We first fabricated Al matrix model nanocomposites and then unlocked the exact roles of IF-WS2 in it at the exact moment of impact, at a time resolution that has never been attempted before, using two in situ techniques. We find that the presence of IF-WS2 reduced the impact velocity by over 100 m/s and in pressure by at least 2 GPa against those Al and hexagonal WS2 platelet composites at an impact speed of 1000 m/s. The IF-WS2 composites achieved an intriguing inelastic impact and outperformed other reference composites, all originating from the "balloon effect" by absorbing the shockwave pressures. This study not only provides fundamental understanding for the dynamic performance of composites but also benefits the development of protective nanocomposite engineering.

14.
Sci Rep ; 7(1): 11829, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928477

RESUMEN

A versatile Rotary Chemical Vapour Deposition (RCVD) technique for the in-situ synthesis of large scale carbon-coated non-magnetic metal oxide nanoparticles (NPs) is presented, and a controllable coating thickness varying between 1-5 nm has been achieved. The technique has significantly up-scaled the traditional chemical vapour deposition (CVD) production for NPs from mg level to 10 s of grams per batch, with the potential for continuous manufacturing. The resulting smooth and uniform C-coatings sheathing the inner core metal oxide NPs are made of well-crystallised graphitic layers, as confirmed by electron microscopy imaging, electron dispersive spectrum elemental line scan, X-ray powder diffractions and Raman spectroscopy. Using nylon 12 as an example matrix, we further demonstrate that the inclusion of C-coated composite NPs into the matrix improves the thermal conductivity, from 0.205 W∙m-1∙K-1 for neat nylon 12 to 0.305 W∙m-1∙K-1 for a 4 wt% C-coated ZnO composite, in addition to a 27% improvement in tensile strength at 2 wt% addition.

15.
J Phys Chem B ; 110(18): 9122-31, 2006 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-16671724

RESUMEN

We report the preparation of mesoporous aluminosilicate materials that exhibit molecular-scale ordering in their pore wall framework. The materials were derived from mesoporous aluminosilica-surfactant mesophases via benign template removal methods, which allowed the retention of molecular ordering in surfactant-free materials. The molecularly ordered aluminosilica-surfactant mesophases were obtained from hydrothermal crystallization of cetyltrimethylammonium hydroxide/Al,Si/H2O systems at 135 degrees C for 12 days. Benign template removal via H2O2-mediated oxidation of the surfactant at room temperature was found to be the most effective method in generating surfactant-free materials with molecular ordering, high textural properties (depending on Al content), and high acidity. The Al in the resulting aluminosilicates was entirely incorporated in framework (tetrahedrally coordinated) sites. Template extraction in acidified ethanol also generated molecularly ordered materials but compromised the Al content and acidity. Template removal via conventional calcination generated porous materials with high textural properties but which exhibited only limited molecular ordering and had relatively low acidity and significant amounts of nonframework Al. This work demonstrates that molecular ordering in mesoporous silicate-surfactant mesophases is due to crystallographic ordering within inorganic frameworks rather than the arrangement/packing of surfactant molecules.

16.
J Phys Chem B ; 110(9): 3889-94, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16509672

RESUMEN

A series of ethylene-containing mesoporous organosilica materials were fabricated via surfactant-mediated assembly of 1,2-bis(triethoxysilyl)ethylene (BTEE) organosilica precursor using alkyltrimethylammonium bromide (CnTAB) surfactants with different alkyl chain length (n=12, 14, 16, 18) as supramolecular templates. The presence of molecularly ordered ethylene groups in the resulting periodic mesoporous organosilica (PMO) materials was confirmed by XRD data along with 29Si and 13C MAS NMR analysis. Additional characterization techniques, namely nitrogen sorption, TEM, and TGA, confirmed the structural ordering and thermal stability of the molecularly ordered ethylene-bridged PMOs. The PMOs exhibit molecular-scale ordering (with a periodicity of 5.6 A) within the organosilica framework and tunable pore size, which depending on the alkyl chain length of the surfactant templates, varied in the range 23-41 A. Furthermore, depending on the alkyl chain length of the templates, the particle morphology of the PMOs gradually changed from monodisperse spheres (for C12TAB) to rod or cakelike particles (for C14TAB) and elongated ropelike particles for longer chain surfactants. Variations in the surfactant chain length therefore allowed control of both the pore size and particle morphology without compromising molecular-scale or structural ordering. The reactivity of ethylene groups was probed by bromination, which demonstrated the potential for further functionalization of the PMOs.

17.
J Phys Chem B ; 110(39): 19735-44, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17004844

RESUMEN

We used differential scanning calorimetry, neutron scattering, and proton NMR to investigate the phase behavior, the structure, and the dynamics of benzene confined in a series of cylindrical mesoporous materials MCM-41 and SBA-15 with pore diameters, d, between 2.4 and 14 nm. With this multitechnique approach, it was possible to determine the structure and, for the first time to our knowledge, the density of confined benzene as a function of temperature and pore size. Under standard cooling rates, benzene partially crystallizes in SBA-15 matrixes (4.7

18.
J Phys Chem B ; 110(37): 18424-31, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16970467

RESUMEN

Carbon materials have been prepared using zeolite 13X or zeolite Y as template and acetonitrile or ethylene as carbon source via chemical vapor deposition (CVD) at 550-1000 degrees C. Materials obtained from acetonitrile at 750-850 degrees C (zeolite 13X) or 750-900 degrees C (zeolite Y) have high surface area (1170-1920 m(2)/g), high pore volume (0.75-1.4 cm(3) g(-1)), and exhibit some structural ordering replicated from the zeolite templates. Templating with zeolite Y generally results in materials with higher surface area. High CVD temperature (> or =900 degrees C) results in low surface area materials that have significant proportions of graphitic carbon and no zeolite-type structural ordering. The nitrogen content of the samples derived from acetonitrile varies between 5 and 8 wt %. When ethylene is used as a carbon precursor, high surface area (800-1300 m(2)/g) materials are only obtained at lower CVD temperature (550-750 degrees C). The ethylene-derived carbons retain some zeolite-type pore channel ordering but also exhibit significant levels of graphitization even at low CVD temperature. In general, the carbon materials retain the particle morphology of the zeolite templates, with solid-core particles obtained at 750-850 degrees C while hollow shells are generated at higher CVD temperature (> or =900 degrees C). We observed hydrogen uptake of up to 4.5 wt % and 45 g H(2)/L (volumetric density) at -196 degrees C and 20 bar for the carbon materials. The hydrogen uptake was found to be dependent on surface area and was therefore influenced by the choice of zeolite template and carbon source. Zeolite Y-templated N-doped carbons had the highest hydrogen uptake capacity. Gravimetric and volumetric methods gave similar uptake capacity at 1 bar (i.e., 1.6 and 2.0 wt % for zeolite 13X and Y-templated N-doped carbons, respectively). Our findings show that zeolite-templated carbons are attractive for hydrogen storage and highlight the potential benefits of functionalization (nitrogen-doping).

19.
ACS Nano ; 10(2): 1871-6, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26580985

RESUMEN

Ultralight and strong three-dimensional (3D) silicon carbide (SiC) structures have been generated by the carbothermal reduction of SiO with a graphene foam (GF). The resulting SiC foams have an average height of 2 mm and density ranging between 9 and 17 mg cm(-3). They are the lightest reported SiC structures. They consist of hollow struts made from ultrathin SiC flakes and long 1D SiC nanowires growing from the trusses, edges, and defect sites between layers. AFM results revealed an average flake thickness of 2-3 nm and lateral size of 2 µm. In-situ compression tests in the scanning electron microscope (SEM) show that, compared with most of the existing lightweight foams, the present 3D SiC exhibited superior compression strengths and significant recovery after compression strains of about 70%.

20.
Chem Commun (Camb) ; (2): 210-2, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15724188

RESUMEN

Hollow silica spheres with large mesopore wall structures have been synthesized via CO(2)-in-water emulsion templating in the presence of PEO-PPO-PEO block copolymers under supercritical fluid conditions.


Asunto(s)
Dióxido de Carbono/química , Microesferas , Compuestos de Silicona/química , Compuestos de Silicona/síntesis química , Agua/química , Polietilenglicoles , Glicoles de Propileno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda