Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Nanobiotechnology ; 21(1): 265, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563614

RESUMEN

BACKGROUND: Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis. METHODS: In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo. RESULTS: BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis. CONCLUSION: BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Ratones , Animales , Butionina Sulfoximina/farmacología , Oxaliplatino/farmacología , Glutatión
2.
Adv Mater ; 36(33): e2403199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38932653

RESUMEN

Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/inmunología , Humanos , Animales , Sistemas de Liberación de Medicamentos
3.
Biotechnol Biofuels Bioprod ; 17(1): 105, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026359

RESUMEN

BACKGROUND: Rapeseed (Brassica napus L.) is one of the most important oil crops and a wildly cultivated horticultural crop. The petals of B. napus serve to protect the reproductive organs and attract pollinators and tourists. Understanding the genetic basis of petal morphology regulation is necessary for B. napus breeding. RESULTS: In the present study, the quantitative trait locus (QTL) analysis for six B. napus petal morphology parameters in a double haploid (DH) population was conducted across six microenvironments. A total of 243 QTLs and five QTL hotspots were observed, including 232 novel QTLs and three novel QTL hotspots. The spatiotemporal transcriptomic analysis of the diversiform petals was also conducted, which indicated that the expression of plant hormone metabolic and cytoskeletal binding protein genes was variant among diversiform petals. CONCLUSIONS: The integration of QTL and RNA-seq analysis revealed that plant hormones (including cytokinin, auxin, and gibberellin) and cytoskeleton were key regulators of the petal morphology. Subsequently, 61 high-confidence candidate genes of petal morphology regulation were identified, including Bn.SAUR10, Bn.ARF18, Bn.KIR1, Bn.NGA2, Bn.PRF1, and Bn.VLN4. The current study provided novel QTLs and candidate genes for further breeding B. napus varieties with diversiform petals.

4.
Adv Mater ; 36(15): e2310818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190432

RESUMEN

Tumor calcification is found to be associated with the benign prognostic, and which shows considerable promise as a somewhat predictive index of the tumor response clinically. However, calcification is still a missing area in clinical cancer treatment. A specific strategy is proposed for inducing tumor calcification through the synergy of calcium peroxide (CaO2)-based microspheres and transcatheter arterial embolization for the treatment of hepatocellular carcinoma (HCC). The persistent calcium stress in situ specifically leads to powerful tumor calcioptosis, resulting in diffuse calcification and a high-density shadow on computed tomography that enables clear localization of the in vivo tumor site and partial delineation of tumor margins in an orthotopic HCC rabbit model. This osmotic calcification can facilitate tumor clinical diagnosis, which is of great significance in differentiating tumor response during early follow-up periods. Proteome and phosphoproteome analysis identify that calreticulin (CALR) is a crucial target protein involved in tumor calcioptosis. Further fluorescence molecular imaging analysis also indicates that CALR can be used as a prodromal marker of calcification to predict tumor response at an earlier stage in different preclinical rodent models. These findings suggest that upregulated CALR in association with tumor calcification, which may be broadly useful for quick visualization of tumor response.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Animales , Conejos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Detección Precoz del Cáncer , Microesferas
5.
Bioengineering (Basel) ; 10(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36829642

RESUMEN

Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.

6.
Bioeng Transl Med ; 8(6): e10482, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023709

RESUMEN

Melittin, the principal constituent in bee venom, is an attractive candidate for cancer therapy. However, its clinical applications are limited by hemolysis, nonspecific cytotoxicity, and rapid metabolism. Herein, a novel genetically engineered vesicular antibody-melittin (VAM) drug delivery platform was proposed and validated for targeted cancer combination therapy. VAM generated from the cellular plasma membrane was bio-synthetically fabricated, with the recombinant protein (hGC33 scFv-melittin) being harbored and displayed on the cell membrane. The bioactive and targetable nanomelittin conjugated by hGC33 scFv could be released in an MMP14-responsive manner at tumor sites, which reduced off-target toxicity, especially the hemolytic activity of melittin. Importantly, VAM could be loaded with small-molecule drugs or nanoparticles for combination therapy. Nanomelittin formed pores in membranes and disturbed phospholipid bilayers, which allowed the anticancer agents (i.e., chemotherapeutic drug doxorubicin and sonosensitizer purpurin 18 nanoparticles) co-delivered by VAM to penetrate deeper tumor sites, leading to synergistic therapeutic effects. In particular, the punching effect generated by sonodynamic therapy further improved the immunomodulatory effect of nanomelittin to activate the immune response. Taken together, our findings indicate that clinically translatable VAM-based strategies represent a universal, promising approach to multimodal synergetic cancer therapy.

7.
Risk Manag Healthc Policy ; 13: 3067-3077, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376429

RESUMEN

BACKGROUND: Face masks are basic protective equipment for preventing respiratory infectious diseases. The measures to properly dispose of and allocate face masks during the early stage of an epidemic caused by respiratory infectious diseases deserve worldwide attention. METHODS: A qualitative research approach was used to document the practice of a citywide face mask-wearing strategy of the Shanghai Municipal Government (called the "Shanghai solution" in this article). Based on data from government work documents, an online face mask-allocation and sales system was built to offer real-time updates of face-mask appointments and sales information in all designated pharmacies and neighborhood committees in Shanghai. RESULTS: In the Shanghai solution, a total of 24.8 million residents in 6,031 committees were covered, in order to achieve universal wearing of face masks during the COVID-19 crisis. Up to 110 million face masks were dispensed to residents in six rounds of face-mask allocation during February to April. This practical experience in Shanghai solved two key problems (insufficient face-mask capacity, protection of vulnerable population) with the supply of face masks by addressing four essential characteristics: overall coordination, on-demand distribution, efficient distribution, and technical support. CONCLUSION: The practice of the citywide face mask-supply strategy of Shanghai could provide several pointers for management of a shortage of emergency materials, dispatch, and transport to other countries during the pandemic.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda