Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Lab Invest ; 101(9): 1142-1152, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34103662

RESUMEN

Numerous studies have revealed that hyperglycemia is a pivotal driver of diabetic vascular complications. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). In this study, a downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanistically, SNHG15 reduced thioredoxin-interacting protein (TXNIP) expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of lncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. In conclusion, SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.


Asunto(s)
Proteínas Portadoras , Hiperglucemia/metabolismo , ARN Largo no Codificante , Tiorredoxinas , Ubiquitinación/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
J Endovasc Ther ; 28(1): 44-52, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748684

RESUMEN

Purpose: To report the findings of an in vitro experiment to evaluate the quality of needle fenestrations dilated by different size balloons in various stent-grafts and to investigate the differences between gradual and rapid dilation. Materials and Methods: Fenestrations were made using an 18-G needle in 5 different polyester or expanded polytetrafluoroethylene (ePTFE) stent-grafts: Relay, Valiant, Hercules, TAG, and Ankura. Each stent-graft received 2 groups of fenestrations: one was followed by gradual sequential dilation (4-, 6-, 8-, and 10-mm balloons) and the other by rapid dilation (4- and 10-mm balloons). The pressure was increased to 10 atmospheres or until the balloon was fully inflated with no waist. Quantitative and qualitative evaluations, including fenestration diameter, area, shape, and margins were conducted using light microscopy and scanning electron microscopy. Results: Relay had the strongest resistance to dilation and Ankura the slightest. The maximum length and area of holes expanded as the balloon diameter increased. The fenestrations in polyester devices were mostly elliptical or slit-like, with limited tears but extensive fibers visible in the margin, while ePTFE stent-grafts showed larger fenestration areas with clearer margins. Ankura showed the best quality of fenestrations, which were always circular or square without fabric tears, while the holes in the TAG were square or elliptical but sometimes had a slit after large balloon dilation (≥6 mm). The Relay, Valiant, Hercules, and Ankura devices showed no difference in maximum diameter, fenestration area, or scores of shape and margin (p>0.05). Rapid dilation in the TAG increased the rate of uncontrolled fabric tear, resulting in a larger final diameter (12.90 vs 10.82 mm, p=0.047), smaller area (30.46 vs 41.09 mm2, p=0.028), worse shape (0.75 vs 1.20, p=0.268), and worse margin (0.40 vs 1.00, p=0.174). Though the decreased fenestration shape and margin scores did not reach statistical significance, the trend for decline was more obvious than with the other devices. Conclusion: Materials and structures of the stent-grafts determine the quality of fenestrations dilated by different size balloons. The use of sequential vs rapid balloon dilation is also crucial for fashioning high-quality fenestrations and should be selected judiciously.


Asunto(s)
Stents , Prótesis Vascular , Implantación de Prótesis Vascular/efectos adversos , Dilatación , Humanos , Ensayo de Materiales , Diseño de Prótesis , Resultado del Tratamiento
3.
Cell Cycle ; 20(14): 1389-1401, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34223793

RESUMEN

Vascular endothelial dysfunction is associated with the progress of many diseases. Circular RNAs (circRNAs) take part in the dysfunction of vascular endothelium. CircRNA hsa_circ_0008360 (circ_0008360) is dysregulated in high glucose-treated vascular endothelium, while the role and mechanism of circ_0008360 in high glucose-induced dysfunction remain unknown. Human umbilical vascular endothelium cells (HUVEC) were stimulated via high glucose. The abundances of circ_0008360, miR-186-5p and cyclin D2 (CCND2) were examined via quantitative real-time polymerase chain reaction or western blot. Vascular endothelial dysfunction was assessed via cell viability, apoptosis, migration and tube formation. The target relationship between miR-186-5p and circ_0008360 or CCND2 was analyzed via dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation analyses. Circ_0008360 expression was enhanced in high-glucose-treated HUVEC. Circ_0008360 silence mitigated high glucose-induced suppression of viability, migration, tube formation, and increase in apoptosis in HUVEC. MiR-186-5p was sponged by circ_0008360, and miR-186-5p inhibition reversed the effect of circ_0008360 silence on high glucose-induced vascular endothelial dysfunction. MiR-186-5p alleviated high glucose-induced vascular endothelial dysfunction via targeting CCND2. CCND2 interference abolished the aggravated effect of circ_0008360 on high glucose-induced vascular endothelial dysfunction. Circ_0008360 knockdown attenuated high glucose-induced vascular endothelial dysfunction via regulating miR-186-5p and CCND2, indicating circ_0008360 might act as a target for the treatment of vascular endothelial dysfunction.Abbreviations: circRNAs, circular RNAs; HUVEC, human umbilical vascular endothelium cells; CCND2, cyclin D2; XPNPEP3, X-prolyl aminopeptidase 3; ceRNAs, competing endogenous RNAs; miRNAs, microRNAs; qRT-PCR, quantitative real-time polymerase chain reaction; RIP, RNA immunoprecipitation; HIF-1α, hypoxia inducible factor 1 alpha; TLR3, toll-like receptor 3; AKAP12, A-Kinase Anchoring Protein 12; ox-LDL, oxidized low-density lipoprotein; HG, high glucose; NG, normal glucose.


Asunto(s)
MicroARNs , ARN Circular , Apoptosis/genética , Proliferación Celular/genética , Ciclina D2/genética , Glucosa/farmacología , Humanos , MicroARNs/metabolismo , ARN Circular/genética
4.
Life Sci ; : 119255, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33636173

RESUMEN

OBJECTIVE: Numerous evidence indicates that hyperglycemia is a pivotal driver of the vascular complications of diabetes. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). MATERIALS AND METHODS: Cell proliferation, migration, apoptosis, and tube formation were measured by cell counting kit-8 assay, transwell assay, flow cytometry, and tube formation assay, respectively. RNA pull-down and RNA-binding protein immunoprecipitation were used to detect the interaction between lncRNA SNHG15 and thioredoxin-interacting protein (TXNIP). Co-immunoprecipitation was used to detect the ubiquitination level of TXNIP and the interaction between TXNIP and E3 ubiquitin ligase ITCH. RESULTS: A downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanically, SNHG15 reduced TXNIP expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of LncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. CONCLUSION: SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda