Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(1): e13290, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284591

RESUMEN

Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.


Asunto(s)
Manipulación de Alimentos , Conservación de Alimentos , Calidad de los Alimentos , Valor Nutritivo , Inocuidad de los Alimentos
2.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283048

RESUMEN

Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.

3.
Crit Rev Food Sci Nutr ; 63(31): 10959-10973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35648042

RESUMEN

Recent studies have explored the field of extracellular vesicles (EVs), driving an increasing interest in their application to human health. EVs have unique physicochemical traits to participate in intercellular communication, thus fostering the idea of using EVs to yield synergistic, preventive, and therapeutic effects. Many reports have shown that EVs contain natural bioactive compounds, such as lipids, proteins, RNA, and other active components that regulate biological processes, thereby contributing to human health. Therefore, in this review, we comprehensively elucidate various facets of the relationship between EVs and bioactive compounds that modulate EVs contents, including RNAs and proteins, discussing different forms of biological regulation. The use of EVs for cargo-loading bioactive compounds to exert biological functions and methods to load bioactive compounds into EVs are also discussed. This review highlighted the effect of EV-delivered bioactive compounds on several therapeutic mechanisms and applications, providing new insight into nutrition and pharmacology.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Comunicación Celular , Proteínas/metabolismo
4.
J Sci Food Agric ; 103(14): 6767-6779, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37209396

RESUMEN

Honey has been used not only as a food source but also for medicinal purposes. Recent studies have indicated that honey exhibits antioxidant, hepatoprotective, hypolipidemic, hypoglycemic and anti-obesity properties, as well as anticancer, anti-atherosclerotic, hypotensive, neuroprotective and immunomodulatory activities. These health benefits of honey could be attributed to its wide range of nutritional components, including polysaccharides and polyphenols, which have been proven to possess various beneficial properties. It is notable that the composition of honey can also be affected by nectar, season, geography and storage condition. Moreover, the safety of honey requires caution to avoid any potential safety incidents. Therefore, this review aims to provide recent research regarding the chemical composition, biological activities and safety of honey, which might be attributed to comprehensive utilization of honey. © 2023 Society of Chemical Industry.


Asunto(s)
Miel , Miel/análisis , Polifenoles , Antioxidantes/química , Néctar de las Plantas
5.
Plant Cell Rep ; 40(4): 753-766, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33616702

RESUMEN

KEY MESSAGE: Combined transcriptome and metabolome analysis of fresh leaf infestation by tea green leafhoppers (Empoasca (Matsumurasca) onukii Matsuda) suggests roles for alternative pre-mRNA splicing and mRNAs in the regulation of aroma formation in tea plants. Oriental Beauty is a high-grade, oolong tea with a pronounced honey-like aroma and rich ripe fruit flavor that develops primarily as a result of the infestation of the fresh leaves by tea green leafhoppers (Empoasca (Matsumurasca) onukii Matsuda). Here, we used PacBio Iso-Seq and RNA-seq analyses to determine the full-length transcripts and gene expression profiles of fresh tea leaves in response to E. (M.) onukii herbivory. We investigated the relationship between RNA-seq, tea metabolites, and aroma response mechanisms in leaves infested by leafhoppers. We found 3644 differentially expressed genes, of which 2552 were up- and 1092 were down-regulated. A total of 49,913 alternative splicing events were predicted, including 324 differential AS events. Moreover, 3105 differentially expressed transcripts were also identified, of which 2295 were up- and 810 were down-regulated. The characterization of expression patterns of the key gene transcript isoforms involved in the aroma formation pathways identified 130 differentially expressed metabolites, 97 of which were up- and 33 were down-regulated. Two key aroma compounds (phenylacetaldehyde and 4-hydroxybenzaldehyde) were highly correlated with genes of the aroma formation pathways. Our results revealed that pre-mRNA AS plays a crucial role in the metabolic regulation surrounding aroma formation under leafhopper herbivory in tea plants.


Asunto(s)
Camellia sinensis/fisiología , Hemípteros , Hojas de la Planta/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Empalme Alternativo , Animales , Carotenoides/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hemípteros/fisiología , Metaboloma , Terpenos/metabolismo
6.
J Food Sci Technol ; 56(2): 783-791, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30906036

RESUMEN

Blueberry belongs to the genus vaccinium, which is rich in a variety of biologically active components beneficial to the human body. Drying of blueberry is a slow and energy-intensive process because of its waxy skin, which has low permeability to moisture. Therefore, chemical pretreatment of ethyl oleate (AEEO) was adopted to accelerate moisture diffusivity. The results showed that the drying rate of blueberries was increased significantly by AEEO treatment, and the drying time can be shortened by 17.17-40.70%. After AEEO dipping, the effective diffusion coefficient increased from 5.461 × 10-9 to 1.067 × 10-8 m2/s at 60 °C. Six semi-theoretical thin-layer models were used to estimate the curves of air-drying of blueberry, and Wang-Singh model was found to perform better than other models. Besides, the rehydration and retention of nutritional contents were also improved by AEEO dipping. The total phenolics, total flavonoids, total anthocyanin content, and ABTS*+ scavenging activity of blueberry were increased by 37.74%, 21.01%, 47.83%, and 30.75%, respectively. The result of SEM observation and cell-membrane permeability indicated that AEEO could break down the wax layer of blueberry, change the crystal structure of wax layer, and increase cell permeability, which resulted in shorter drying time and higher quality of blueberry.

7.
Physiol Mol Biol Plants ; 23(2): 421-427, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28461729

RESUMEN

Mulberry (Morus alba) is an economically and ecologically important, widespread woody plant. It has served human beings for over hundreds of years, and it is still widely used in pharmaceuticals, food industry and farming nowadays. Using modern techniques, deeper understanding in classification and conservation resources of mulberry leads to higher-efficiency hybrids among populations. Genetic polymorphisms among 42 mulberry genotypes from seven countries over Asia and South America were detected using 17 inter simple sequence repeat (ISSR) primers. A dendrogram was constructed using the similarity matrix among genotypes and a principal component analysis (PCA) was carried out to further identify and cluster the mulberry genotypes. In the 42 genotypes, 175 distinct bands were displayed, among which 169 were polymorphic bands (96.57%). The polymorphic information content of 17 ISSR primers ranged from 0.2921 to 0.3746 with the mean of 0.3494. And Nei's index and Shanon's information index averaged 0.116 and 0.174, respectively, indicating low diversity of mulberry. For further study, cluster analysis and PCA were carried out and the results were similar. 42 genotypes were grouped, showing some hybridized combinations. Additionally, a connection between mulberry diseases and their genotypes was noted, which indicates possible application for ISSR in studying disease resistance of mulberry.

8.
Plants (Basel) ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38592811

RESUMEN

AREB/ABF (ABA response element binding) proteins in plants are essential for stress responses, while our understanding of AREB/ABFs from orchid species, important traditional medicinal and ornamental plants, is limited. Here, twelve AREB/ABF genes were identified within three orchids' complete genomes and classified into three groups through phylogenetic analysis, which was further supported with a combined analysis of their conserved motifs and gene structures. The cis-element analysis revealed that hormone response elements as well as light and stress response elements were widely rich in the AREB/ABFs. A prediction analysis of the orchid ABRE/ABF-mediated regulatory network was further constructed through cis-regulatory element (CRE) analysis of their promoter regions. And it revealed that several dominant transcriptional factor (TF) gene families were abundant as potential regulators of these orchid AREB/ABFs. Expression profile analysis using public transcriptomic data suggested that most AREB/ABF genes have distinct tissue-specific expression patterns in orchid plants. Additionally, DcaABI5 as a homolog of ABA INSENSITIVE 5 (ABI5) from Arabidopsis was selected for further analysis. The results showed that transgenic Arabidopsis overexpressing DcaABI5 could rescue the ABA-insensitive phenotype in the mutant abi5. Collectively, these findings will provide valuable information on AREB/ABF genes in orchids.

9.
Food Chem ; 448: 139125, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537547

RESUMEN

In this study, the ultrasonic-microwave pretreatment was defined as a processing technology in the production of tribute citrus powder, and it could increase the flavonoid compounds in the processing fruit powder. A total of 183 upregulated metabolites and 280 downregulated metabolites were obtained by non-targeted metabolomics, and the differential metabolites was mainly involved in the pathways of flavonoid biosynthesis, flavone and flavonol biosynthesis. A total of 8 flavonoid differential metabolites were obtained including 5 upregulated metabolites (6"-O-acetylglycitin, scutellarin, isosakuranin, rutin, and robinin), and 3 downregulated metabolites (astragalin, luteolin, and (-)-catechin gallate) by flavonoids-targeted metabolomics. The 8 flavonoid differential metabolites participated in the flavonoid biosynthesis pathways, flavone and flavonol biosynthesis pathways, and isoflavonoid biosynthesis pathways. The results provide a reference for further understanding the relationship between food processing and food components, and also lay a basis for the development of food targeted-processing technologies.


Asunto(s)
Citrus , Flavonoides , Frutas , Metabolómica , Citrus/metabolismo , Citrus/química , Flavonoides/metabolismo , Flavonoides/química , Frutas/química , Frutas/metabolismo , Polvos/química , Polvos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Manipulación de Alimentos
10.
Biosensors (Basel) ; 14(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39056598

RESUMEN

Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum. A total of 554 differential proteins, including 292 up-regulated proteins and 262 down-regulated proteins, were screened; the differential proteins were annotated; and functional enrichment analysis was performed. The differential proteins were associated with the pathways of metabolism, gene information processing, environmental information processing, cellular processes, and organismal systems. The functional enrichment analysis indicated that the immunization procedures mostly resulted in the regulation of biochemical metabolic and signal transduction pathways, including the biosynthesis of amino acid (glycine, serine, and threonine), ascorbate, and aldarate metabolism; fatty acid degradation; and antigen processing and presentation. The 14 key proteins with high connectivity included G1U9T1, B6V9S9, G1SCN8, G1TMS5, G1U9U0, A0A0G2JH20, G1SR03, A0A5F9DAT4, G1SSA2, G1SZ14, G1T670, P30947, P29694, and A0A5F9C804, which were obtained by the analysis of protein-protein interaction networks. This study could provide potential directions for protein interaction and antibody production for food hazards in animal immunization.


Asunto(s)
Patulina , Proteómica , Animales , Conejos
11.
Int J Biol Macromol ; 255: 128217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992932

RESUMEN

The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.


Asunto(s)
Antiinfecciosos , Quitosano , Staphylococcus aureus , Quitosano/farmacología , Quitosano/química , Ácido Gálico/farmacología , Ácido Gálico/química , Rayos Ultravioleta , Peptidoglicano , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/química , Embalaje de Alimentos/métodos
12.
Bioengineered ; 15(1): 2305029, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38258524

RESUMEN

Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.


• Avenanthramides are unique nutritional alkaloids in oats• AVN bioactivity, distribution, and the potential AVNs biosynthesis are discussed• AVNs can be produced via induction and metabolic engineering.


Asunto(s)
Avena , Grano Comestible , Animales , Humanos , ortoaminobenzoatos , Amidas , Fenoles
13.
Food Res Int ; 191: 114716, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059964

RESUMEN

Dehydration is an effective method for the long-term storage and aroma retention of gonggan (Citrus sinensis Osb. 'Deqing Gonggan'), which is a Chinese variety of citrus, with unique and characteristic floral, fruity, and citrus flavors. However, the aroma profiles of gonggans prepared using oven- and freeze-drying, the most widely-used drying methods, remain unclear. In this study, a total of 911 volatile organic compounds (VOCs) were detected in dried gonggan. These were primarily composed of alcohols (7.69%), aldehydes (7.03%), esters (15.38%), ketones (7.58%), and terpenoids (23.19%). A total of 67 odorants contributed significantly to the overall aroma of dried gonggans, with the major odor qualities being detected as green, citrus, fruity, floral, and sweet. These were mainly attributed to the presence of aldehydes, esters, and terpenoids. Freeze-drying was more effective in maintaining the unique citrus and mandarin-like aromas attributed to compounds such as limonene, citrial, ß-myrcene, ß-pinene, and γ-terpinene. Moreover, (E,E)-2,4-decadienal had the highest relative odor activity value (rOAV) in freeze-dried gonggans, followed by (E)-2-nonenal, furaneol, (E, E)-2, 4-nonadienal, and E-2-undecenal. Oven-drying promoted the accumulation of terpenes such as octatriene, trans-ß-ocimene, cyclohexanone, copaene, and ɑ-irone, imparting a soft aroma of flowers, fruits, and sweet. Increasing the temperature led to an increase in existing VOCs or the generation of new VOCs through phenylpropanoid, terpenoid, and fatty acid metabolism. The findings of this study offer insights into an optimized procedure for producing high-quality dried gonggans. These insights can be valuable for the fruit-drying industry, particularly for enhancing the quality of dried fruits.


Asunto(s)
Liofilización , Odorantes , Terpenos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Terpenos/análisis , Frutas/química , Citrus sinensis/química , Desecación/métodos , Aldehídos/análisis , Cromatografía de Gases y Espectrometría de Masas , Cetonas/análisis , Monoterpenos Bicíclicos/análisis , Ésteres/análisis , Alcadienos/análisis , Ciclohexenos/análisis , Manipulación de Alimentos/métodos , Monoterpenos Acíclicos , Monoterpenos Ciclohexánicos , Alquenos , Sesquiterpenos
14.
J Agric Food Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051975

RESUMEN

Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-ß-D-Manp(1→, →4)-ß-Glcp(1→, ß-D-Manp(1→, and ß-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1ß to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.

15.
Front Pharmacol ; 15: 1380277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628645

RESUMEN

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

16.
Zhongguo Zhong Yao Za Zhi ; 38(21): 3645-50, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24494547

RESUMEN

As antibiotic drug resistance has become one of the most serious threats to global public health, there is a pressing need to look for new effective therapeutic drugs. Flavonoids are a large class of chemicals widely exist in plants, and have such effects as direct antibiotics, synergistic antibiotics and inhibition of bacterial activity. In this article, we made a summary for the advance in studies on the antibacterial effects of flavonoids and their mechanism.


Asunto(s)
Antibacterianos/farmacología , Flavonoides/farmacología , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Sinergismo Farmacológico , Flavonoides/química , Humanos
17.
Food Chem ; 413: 135574, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739644

RESUMEN

Cell adhesion of four cultivars of tomato fruit, "Micro Tom (MT)", "Heinz 1706 (H1706)", "Money Maker (MM)", "Ailsa Craig (AC)" were evaluated and cell walls were analyzed in order to assess the possible contribution of pectic and hemicellulosic polysaccharides to the softening and altered cell adhesion at two different stages of ripeness. Cell wall material (CWM) and solubilised fractions of green and red ripe fruit were analyzed by chemical, enzymatic techniques. In comparison with the four cultivars of tomato fruits, H1706 and MM are harder than MT and AC at both green and red ripe stage. The ripening-associated solubilisation of rhamnogalacturonan-riched pectic polysaccharides was reduced in H1706 and MM, and the content of side -chain sugars from RG-I reduced by more than 50% in MT and AC. In addition to recognized pectic modifying enzymes, RGase had a good effect on cell separation of H1706 and MM fruit at red ripe stage. The higher RG-I content and branching degree have been associated with increased cell adhesion and reduced cell wall porosity, thus maintained fruit firmness.


Asunto(s)
Pectinas , Solanum lycopersicum , Pectinas/metabolismo , Frutas/metabolismo , Adhesión Celular , Polisacáridos/análisis , Pared Celular/química
18.
Int J Biol Macromol ; 225: 1350-1360, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436596

RESUMEN

In this study, one high-performance hemicelluloses (HC)-based sprayable and biodegradable pesticide mulch film was developed. Firstly, HC was transesterified with vinyl acetate (VA) to improve its solubility and film-forming ability. Then abamectin (ABA) was encapsulated by ß-cyclodextrin (ß-CD) to endow mulch film persistent anti-pesticide activity. After that, sodium alginate (SA) and gelatin were added to develop the mechanical performances of the mulch film. As a result, the obtained mulch film showed good characteristics, with optimum mechanical strength, elongation at break, water vapor permeability (WVP), swelling ratio (SR), and weight loss (biodegradability) of 7.9 ± 0.3 MPa, 43.6 ± 2.0 %, 2.1 ± 0.1 × 10-11 g mm m-2 s-1 kPa-1, 73.8 ± 2.0 %, and 69.3 %, respectively. After covering with mulch film, the soil moisture and temperature were developed to 90.8 % and 19.3 ± 0.2 °C, respectively, which could facilitate Chinese cabbage growth, with optimum germination rate of 98.6 ± 6.4 %.


Asunto(s)
Plaguicidas , Polisacáridos , Suelo , Alginatos
19.
Food Chem ; 402: 134216, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152561

RESUMEN

Authenticity and origin tracing of animal-derived food are particularly necessary due to various kinds of food fraud such as adulteration, counterfeiting, substitution and intentional mislabeling. This review focuses on the current research status of animal-derived food from the aspects of geographical origin, feeding ingredients and systems, adulteration of substitutes, and physical and chemical properties. The methods and statistical models involved in the research and their advantages and disadvantages are summarized. Stable isotope ratio analysis and element analysis are the most extensive used geographical traceability techniques. Spectroscopic techniques have the advantages of quick response, low cost and non-destructiveness. Instrument technology combined with chemometrics is the key method for origin traceability and authenticity of animal-derived food. In addition, there is a new trend of origin traceability by analyzing inedible parts of animal-derived food. This review intends to give a broad but comprehensive understanding in authenticity and geographical origin traceability of animal-derived food.


Asunto(s)
Quimiometría , Isótopos , Animales , Isótopos/análisis , Análisis Espectral , Fraude
20.
Int J Biol Macromol ; 237: 124161, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965563

RESUMEN

Penta-O-galloyl-ß-d-glucose (PGG) was prepared from tannic acid methanolysis products based on HSCCC, and its protective effects and mechanism on the glucose-induced glycation were investigated for the first time. PGG was confirmed to exhibit strong anti-AGEs effects in bovine serum albumin (BSA)-glucose (Glu) and BSA-methylglyoxal (MGO) glycation systems. It was showed that PGG could inhibit the AGEs formation by blocking glycated intermediates (fructosamine and α-dicarbonyl compounds), eliminating radicals, and chelating metal-ions. In-depth mechanism analysis proved that PGG could prevent BSA from glycation by hindering the accumulation of amyloid fibrils, stabilizing the BSA secondary structures, and binding the partial glycation sites. Furthermore, PGG exhibited a prominent trapping capacities on the reactive intermediate MGO by generating PGG-mono-MGO adduct. This research indicated that PGG could be an effective agent to block Glu/MGO-triggered glycation and offered new insights into PGG as a functional ingredient in food materials for preventing diabetic syndrome.


Asunto(s)
Glucosa , Rubiaceae , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Glicosilación , Albúmina Sérica Bovina/química , Piruvaldehído/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda