RESUMEN
Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.
Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Anticuerpos AntiviralesRESUMEN
The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.