Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anal Bioanal Chem ; 413(11): 2879-2891, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33822260

RESUMEN

Medicinal plants are complex chemical systems containing thousands of secondary metabolites. The rapid classification and characterization of the components in medicinal plants using mass spectrometry (MS) remains an immense challenge. Herein, a novel strategy is presented for MS through the combination of solid-phase extraction (SPE), multiple mass defect filtering (MMDF) and molecular networking (MN). This strategy enables efficient classification and annotation of natural products. When combined with SPE and MMDF, the improved analytical method of MN can perform the rapid annotation of diverse natural products in Citrus aurantium according to the tandem mass spectrometry (MS/MS) fragments. In MN, MS2LDA can be initially applied to recognize substructures of natural products, according to the common fragmentation patterns and neutral losses in multiple MS/MS spectra. MolNetEnhancer was adopted here to obtain chemical classifications provided by ClassyFire. The results suggest that the integrated SPE-MMDF-MN method was capable of rapidly annotating a greater number of natural products from Citrus aurantium than the classical MN strategy alone. Moreover, SPE and MMDF enhanced the effectiveness of MN for annotating, classifying and distinguishing different types of natural products. Our workflow provides the foundation for the automated, high-throughput structural classification and annotation of secondary metabolites with various chemical structures. The developed approach can be widely applied in the analysis of constituents in natural products.


Asunto(s)
Productos Biológicos/química , Citrus/química , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Química Computacional
2.
J Sep Sci ; 44(11): 2189-2205, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33784419

RESUMEN

Fructus Aurantii is a traditional medicated diet in East Asia. To determine the underlying chemical markers responsible for the quality and efficacy of Fructus Aurantii, a sensitive metabolomic method was applied to distinguish Fructus Aurantii in Jiangxi Province from other two geographical locations (Hunan Province and Chongqing City) in China. In the present study, multivariate analyses were adopted to compare chemical compositions in 21 batches of Fructus Aurantii samples. Among three geographical origins, 23 differential compounds were structurally identified. Serum pharmacochemistry exhibited that 22 components could be detected in rat serum. Six differential and absorbed components were selected as six potential markers. Statistical analysis revealed that the content of six markers varied widely in three origins of Fructus Aurantii. Six differential and absorbed components were evaluated further by biological activity. Neohesperidin, naringin, and meranzin showed inhibitory effect on acetylcholinesterase that regulates gastrointestinal motility in vitro and in silico, suggesting that these three components may be determined as the active biomarkers of Fructus Aurantii. These findings demonstrate the potential of biomarkers for identification and quality control of Fructus Aurantii.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Citrus/química , Cumarinas/farmacología , Flavanonas/farmacología , Hesperidina/análogos & derivados , Metabolómica , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , China , Inhibidores de la Colinesterasa/sangre , Inhibidores de la Colinesterasa/metabolismo , Cumarinas/sangre , Cumarinas/metabolismo , Descubrimiento de Drogas , Flavanonas/sangre , Flavanonas/metabolismo , Hesperidina/sangre , Hesperidina/metabolismo , Hesperidina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
3.
Mol Cell Proteomics ; 18(3): 520-533, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617157

RESUMEN

Celastrol, derived from the roots of the Tripterygium Wilfordi, shows a striking effect on obesity. In the present study, the role of celastrol in cholestasis was investigated using metabolomics and transcriptomics. Celastrol treatment significantly alleviated cholestatic liver injury in mice induced by α-naphthyl isothiocyanate (ANIT) and thioacetamide (TAA). Celastrol was found to activate sirtuin 1 (SIRT1), increase farnesoid X receptor (FXR) signaling and inhibit nuclear factor-kappa B and P53 signaling. The protective role of celastrol in cholestatic liver injury was diminished in mice on co-administration of SIRT1 inhibitors. Further, the effects of celastrol on cholestatic liver injury were dramatically decreased in Fxr-null mice, suggesting that the SIRT1-FXR signaling pathway mediates the protective effects of celastrol. These observations demonstrated a novel role for celastrol in protecting against cholestatic liver injury through modulation of the SIRT1 and FXR.


Asunto(s)
Colestasis Intrahepática/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/metabolismo , Sirtuina 1/metabolismo , Triterpenos/administración & dosificación , 1-Naftilisotiocianato/efectos adversos , Adulto , Animales , Colestasis Intrahepática/sangre , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/genética , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Metabolómica/métodos , Ratones , Persona de Mediana Edad , Triterpenos Pentacíclicos , Transducción de Señal/efectos de los fármacos , Tioacetamida/efectos adversos , Resultado del Tratamiento , Triterpenos/farmacología
4.
Pharmacol Res ; 155: 104752, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169656

RESUMEN

As a potential drug for treating inflammatory, autoimmune diseases and cancers, triptolide (TP) is greatly limited in clinical practice due to its severe toxicity, particularly for liver injury. Recently, metabolic homeostasis was vitally linked to drug-induced liver injury and gut microbiota was established to play an important role. In this study, we aimed to investigate the functions of gut microbiota on TP-induced hepatotoxicity using metabolomics in mice. Here, predepletion of gut microbiota by antibiotic treatment strikingly aggravated liver injury and caused mortality after treated with a relatively safe dosage of TP at 0.5 mg/kg, which could be reversed by gut microbial transplantation. The loss of gut microbiota prior to TP treatment dramatically elevated long chain fatty acids and bile acids in plasma and liver. Further study suggested that gut microbiota-derived propionate contributed to the protective effect of gut microbiota against TP evidenced by ameliorative inflammatory level (Tnfa, Il6 and Cox2), ATP, malondialdehyde and hepatic histology. Supplementing with propionate significantly decreased the mRNA levels of genes involved in fatty acid biosynthesis (Srebp1c, Fasn and Elovl6), resulting in the decreased long chain fatty acids in liver. Moreover, TP restricted the growth of Firmicutes and led to the deficiency of short chain fatty acids in cecum content. In conclusion, our study warns the risk for TP and its preparations when antibiotics are co-administrated. Intervening by foods, prebiotics and probiotics toward gut microbiota or supplementing with propionate may be a clinical strategy to improve toxicity induced by TP.


Asunto(s)
Antibacterianos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Diterpenos , Microbioma Gastrointestinal , Fenantrenos , Propionatos/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Compuestos Epoxi , Ácidos Grasos Volátiles/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal
5.
Xenobiotica ; 50(9): 1076-1089, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32174209

RESUMEN

Coumarins have aroused high interests due to their diverse bioactivities. Understanding of its metabolism contributes to determine the druggability of coumarin in vivo.A sensitive and efficient strategy based on ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) analysis combined with various data-processing techniques including metabolomics and multiple mass defect filter (MMDF) was established for the comprehensive screening and elucidation of potential coumarin metabolites.Total 20 metabolites of scoparone were identified in this study, including 14 undescribed metabolites. The metabolism of two other similar coumarins scopoletin and esculetin also could be determined using this strategy.By the established strategy, this study gives the insights about the major metabolic pathways of scoparone in vivo and in vitro metabolism, including demethylation, hydroxylation, hydration, cysteine conjugation, glucuronide conjugation and sulfate conjugation. Additionally, the metabolic pathways of scopoletin and esculetin were determined as hydroxylation, glucuronidation and sulfation. These results contribute to the understanding of metabolic characterization of coumarins, and demonstrate that the combination of UPLC-MS-based metabolomics and MMDF is a powerful approach to determine the metabolic pathways of coumarin compounds.


Asunto(s)
Cumarinas/metabolismo , Metabolómica , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Hidroxilación , Redes y Vías Metabólicas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
Biomed Chromatogr ; 34(8): e4864, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32330997

RESUMEN

Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC-QTOF-MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citocromo P-450 CYP3A , Diterpenos/efectos adversos , Metabolómica/métodos , Fenantrenos/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cromatografía Líquida de Alta Presión/métodos , Citocromo P-450 CYP3A/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Dexametasona/farmacología , Compuestos Epoxi/efectos adversos , Femenino , Cetoconazol/farmacología , Hígado/metabolismo , Hígado/patología , Espectrometría de Masas/métodos , Metaboloma/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
7.
J Proteome Res ; 18(3): 1133-1144, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30706713

RESUMEN

Hyperlipidemia, characterized by high serum lipids, is a risk factor for cardiovascular disease. Recent studies have identified an important role for celastrol, a proteasome inhibitor isolated from Tripterygium wilfordii Hook. F., in obesity-related metabolic disorders. However, the exact influences of celastrol on lipid metabolism remain largely unknown. Celastrol inhibited the terminal differentiation of 3T3-L1 adipocytes and decreased the levels of triglycerides in wild-type mice. Lipidomics analysis revealed that celastrol increased the metabolism of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs). Further, celastrol reversed the tyloxapol-induced hyperlipidemia induced associated with increased plasma LPCs, PCs, SMs, and ceramides (CMs). Among these lipids, LPC(16:0), LPC(18:1), PC(22:2/15:0), and SM(d18:1/22:0) were also decreased by celastrol in cultured 3T3-L1 adipocytes, mice, and tyloxapol-treated mice. The mRNAs encoded by hepatic genes associated with lipid synthesis and catabolism, including Lpcat1, Pld1, Smpd3, and Sptc2, were altered in tyloxapol-induced hyperlipidemia, and significantly recovered by celastrol treatment. The effect of celastrol on lipid metabolism was significantly reduced in Fxr-null mice, resulting in decreased Cers6 and Acer2 mRNAs compared to wild-type mice. These results establish that FXR was responsible in part for the effects of celastrol in controlling lipid metabolism and contributing to the recovery of aberrant lipid metabolism in obesity-related metabolic disorders.


Asunto(s)
Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Triterpenos/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperlipidemias/inducido químicamente , Hiperlipidemias/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisofosfatidilcolinas/genética , Ratones , Triterpenos Pentacíclicos , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Fosfolipasa D/genética , Polietilenglicoles/toxicidad , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/genética
8.
Chem Res Toxicol ; 32(10): 1965-1976, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31468958

RESUMEN

Elemicin is a constituent of natural aromatic phenylpropanoids present in many herbs and spices. However, its potential to cause toxicity remains unclear. To examine the potential toxicity and associated mechanism, elemicin was administered to mice for 3 weeks and serum metabolites were examined. Enlarged livers were observed in elemicin-treated mice, which were accompanied by lower ratios of unsaturated- and saturated-lysophosphatidylcholines in plasma, and inhibition of stearoyl-CoA desaturase 1 (Scd1) mRNA expression in liver. Administration of the unsaturated fatty acid oleic acid reduced the toxicity of 1'-hydroxylelemicin, the primary oxidative metabolite of elemicin, while treatment with the SCD1 inhibitor A939572 potentiated its toxicity. Furthermore, the in vitro use of recombinant human CYPs and chemical inhibition of CYPs in human liver microsomes revealed that CYP1A1 and CYP1A2 were the primary CYPs responsible for elemicin bioactivation. Notably, the CYP1A2 inhibitor α-naphthoflavone could attenuate the susceptibility of mice to elemicin-induced hepatomegaly. This study revealed that metabolic activation of elemicin leads to SCD1 inhibition in liver, suggesting that upregulation of SCD1 may serve as potential intervention strategy for elemicin-induced toxicity.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Pirogalol/análogos & derivados , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Administración Oral , Animales , Inhibidores Enzimáticos/administración & dosificación , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Pirogalol/administración & dosificación , Pirogalol/metabolismo , Pirogalol/farmacología , Estearoil-CoA Desaturasa/metabolismo
9.
Xenobiotica ; 49(6): 655-670, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29897827

RESUMEN

To elucidate the metabolism of pazopanib, a metabolomics approach was performed based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry. A total of 22 pazopanib metabolites were identified in vitro and in vivo. Among these metabolites, 17 were novel, including several cysteine adducts and aldehyde derivatives. By screening using recombinant CYPs, CYP3A4 and CYP1A2 were found to be the main forms involved in the pazopanib hydroxylation. Formation of a cysteine conjugate (M3), an aldehyde derivative (M15) and two N-oxide metabolites (M18 and M20) from pazopanib could induce the oxidative stress that may be responsible in part for pazopanib-induced hepatotoxicity. Morphological observation of the liver suggested that pazopanib (300 mg/kg) could cause liver injury. The aspartate transaminase and alanine aminotransferase in serum significantly increased after pazopanib (150, 300 mg/kg) treatment; this liver injury could be partially reversed by the broad-spectrum CYP inhibitor 1-aminobenzotriazole (ABT). Metabolomics analysis revealed that pazopanib could significantly change the levels of L-carnitine, proline and lysophosphatidylcholine 18:1 in liver. Additionally, drug metabolism-related gene expression analysis revealed that hepatic Cyp2d22 and Abcb1a (P-gp) mRNAs were significantly lowered by pazopanib treatment. In conclusion, this study provides a global view of pazopanib metabolism and clues to its influence on hepatic function.


Asunto(s)
Antineoplásicos/toxicidad , Hígado/efectos de los fármacos , Pirimidinas/toxicidad , Sulfonamidas/toxicidad , Alanina Transaminasa/sangre , Animales , Antineoplásicos/metabolismo , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Indazoles , Hígado/metabolismo , Hígado/patología , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Sulfonamidas/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3562-3568, 2019 Aug.
Artículo en Zh | MEDLINE | ID: mdl-31602923

RESUMEN

The mass spectrometry-based metabolomics method was used to systematically investigate the formation of celastrol metabolites,and the effect of celastrol on endogenous metabolites. The mice plasma,urine and feces samples were collected after oral administration of celastrol. Ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry( UPLC-QTOF-MS) was applied to analyze the exogenous metabolites of celastrol and its altered endogenous metabolites. Mass defect filtering was adopted to screen for the exogenous metabolites of celastrol. Multivariate statistical analysis was used to identify the endogenous metabolites affected by celastrol. Celastrol and its eight metabolites were detected in urine and feces of mice,and 5 metabolites of them were reported for the first time. The hydroxylated metabolites were observed in the metabolism of both human liver microsomes and mouse liver microsomes. Further recombinant enzyme experiments revealed CYP3 A4 was the major metabolic enzyme involved in the formation of hydroxylated metabolites. Urinary metabolomics revealed that celastrol can affect the excretion of intestinal bacteria-related endogenous metabolites,including hippuric acid,phenylacetylglycine,5-hydroxyindoleacetic acid,urocanic acid,cinnamoylglycine,phenylproplonylglycine and xanthurenic acid. These results are helpful to elucidate the metabolism and disposition of celastrol in vivo,and its mechanism of action.


Asunto(s)
Metabolómica , Triterpenos/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Ratones , Microsomas Hepáticos/metabolismo , Triterpenos Pentacíclicos , Triterpenos/metabolismo
11.
J Proteome Res ; 17(5): 1887-1897, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29664296

RESUMEN

Nutmeg is a Traditional Chinese Medicine used to treat gastrointestinal diseases. Some reports have indicated that nutmeg has hepatoprotective activity. In this study, a thioacetamide (TAA)-induced acute liver injury model in mice was used to explore the mechanism of the protective effects of nutmeg extract (NME), including its major bioactive component myrislignan. The results indicated that NME could effectively protect TAA-induced liver damage as assessed by recovery of increased serumtransaminases, decrease in hepatic oxidative stress, and lower hepatic inflammation. Metabolomics analysis further revealed that treatment with NME led to the recovery of a series of lipids including lysophosphatidylcholines that were decreased and a lowering of acylcarnitines that were increased in mouse plasma and liver after TAA exposure. Gene expression analysis demonstrated that the hepatoprotective effect of NME was achieved by modulation of the peroxisome proliferator-activated receptor alpha (PPARα) as well as the decrease in oxidative stress. NME could not protect from TAA-induced liver injury in Ppara-null mice, suggesting that its protective effect was dependent on PPARα. Myrislignan, a representative neolignan in nutmeg, showed potent protective activity against TAA-induced liver toxicity. These data demonstrate that nutmeg alleviates TAA-induced liver injury through the modulation of PPARα and that the lignan compounds in nutmeg such as myrislignan partly contributed to this action.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Myristica , PPAR alfa/fisiología , Animales , Carnitina/análogos & derivados , Carnitina/análisis , Lípidos/análisis , Metabolómica , Ratones , Ratones Noqueados , Estrés Oxidativo , Sustancias Protectoras/farmacología , Tioacetamida/efectos adversos
12.
Biomed Chromatogr ; 32(12): e4359, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30091800

RESUMEN

Drug-induced liver injury is a clinically leading side-effect of drugs. In the present study, a liquid chromatography mass spectrometry-based metabolomics protocol was optimized for extraction and analysis of endogenous metabolites from liver tissue during hepatotoxicity. Various extraction solutions, resuspension solutions, extraction folds and dissolution methods for the supernatant were compared using the number of extracted total ions, relative response and relative extraction efficiency of targeted metabolites from liver tissue. The polar and nonpolar endogenous metabolites associated with liver injury were analyzed by hydrophilic interaction chromatography and reversed-phase liquid chromatography with UPLC-QTOFMS. The results indicated that extraction with 10-fold 50% acetonitrile in water and the supernatant diluted (1:1) with 100% acetonitrile rather than resuspension was the optimal extraction protocol. Subsequently, the optimized method was able to examine the change in metabolites in mouse liver tissue resulting from treatment with a toxic natural product, toosendanin. Taken together, the optimized extraction and analytical protocol provides high reliability and reproducibility for polar and nonpolar metabolites in liver tissue and may be suitable for metabolomics analysis of liver injury induced by drugs or chemicals.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/química , Espectrometría de Masas/métodos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Animales , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/toxicidad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Toxicidad
13.
J Sep Sci ; 40(13): 2713-2721, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28485887

RESUMEN

Er-Zhi-Pill, which consists of Ligustri lucidi fructus and Ecliptae prostratae herba, is a classical traditional Chinese medicinal formulation widely used as a liver-nourishing and kidney-enriching tonic. To identify the bioactive ingredients of Er-Zhi-Pill and characterize the variation of chemical constituents between co-decoction and mix of individually decocted L. lucidi fructus and E. prostratae herba, a novel metabolomics approach based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in both positive and negative ion modes, was established to comprehensively analyze chemical constituents and probe distinguishable chemical markers. In total, 68 constituents were unambiguously or tentatively identified through alignment of accurate molecular weights within an error margin of 5 ppm, elemental composition and fragmentation characteristics, including eight constituents, which were confirmed by comparing to reference standards. Furthermore, principal component analysis and partial least squares discriminant analysis using Simca-p+ 12.0 software were applied to investigate chemical differences between formulations obtained by co-decoction and a mixture of individual decoctions. Global chemical differences were found in samples of two different decoction methods, and 16 components, including salidroside, specneuzhenide and wedelolactone, contributed most to the observed differences. This study provides a basic chemical profile for the quality control and further mechanism research of Er-Zhi-Pill.


Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Espectrometría de Masas , Metabolómica , Análisis Discriminante
14.
Molecules ; 22(10)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29057810

RESUMEN

The novel target products were synthesized in the formation of a triazine ring from berberine, magnolol, and metformin catalyzed by sodium methylate. The structures of products 1-3 were firstly confirmed by extensive spectroscopic analyses and single-crystal X-ray diffraction. The crystal structures of the target product 2 and the intermediate product 7b were reported for the first time. All target products were evaluated for their anti-inflammatory and antidiabetic activities against INS-1 and RAW264.1 cells in vitro and all products showed excellent anti-inflammatory effects and anti-insulin resistance effects. Our studies indicated that new compounds 1-3 were found to be active against inflammation and insulin resistance.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Metformina/farmacología , Triazinas/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Berberina/síntesis química , Berberina/química , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Ciclización , Humanos , Resistencia a la Insulina , Lignanos/síntesis química , Lignanos/química , Metformina/análogos & derivados , Metformina/química , Estructura Molecular , Sodio/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
15.
Anal Bioanal Chem ; 408(12): 3185-201, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27025382

RESUMEN

Diarylheptanoid A, 5-hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)-1-phenyl-3-heptanone, is a naturally occurring phytochemical ingredient isolated from the rhizome of Alpinia officinarum. In order to confirm the anti-inflammatory activity of diphenylheptane A, we investigated its effects on lipopolysaccharide (LPS)-induced pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1ß (IL-1ß), and tumor necrosis factor α (TNF-α), as well as upstream genes, including the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB) p65, p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase 1/2 (ERK1/2). Our results have proved the anti-inflammatory property of diphenylheptane A. Based on this finding, an LPS-induced RAW264.7 cell inflammatory model was introduced to evaluate the anti-inflammatory activity associated with glycerophospholipid (GPL) metabolism regulated by diphenylheptane A. We applied ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight-mass spectrometry (UPLC/ESI-QTOF-MS) to the metabolic profiling of GPL synthesis in LPS-stimulated macrophages with the aim of identifying differentially synthesized GPL metabolites. Sixteen GPL metabolites, whose changes were restored to normal level after diphenylheptane A treatment, were further screened to be considered as useful biomarkers of inflammation. Overall, our study revealed for the first time that diphenylheptane A reestablished the production of 16 plasma membrane GPLs to basal level in LPS-activated RAW264.7 cells, suggesting the potential therapeutic property of phytochemical compounds against inflammatory diseases.


Asunto(s)
Cromatografía Liquida/métodos , Dinoprostona/metabolismo , Heptanos/farmacología , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Línea Celular , Ratones
16.
Yao Xue Xue Bao ; 51(9): 1451-7, 2016 09.
Artículo en Zh | MEDLINE | ID: mdl-29924542

RESUMEN

An ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometric method was developed for rapid analysis of glycerophospholipids in RAW264.7 macrophage. The modified Bligh-Dyer was applied to extract glycerophospholipids from RAW264.7 macrophage. The target compounds, detected by mass spectrometry in ESI(+) and ESI(-) mode, were separated by gradient elution with mobile phase (A) water(containing 10 mmol·L(-1) ammonium acetate and 0.25% acetic acid) and (B) acetonitrile/isopropanol (1 : 1) (containing 10 mmol·L(-1) ammonium acetate and 0.25% acetic acid). A total of 82 glycerophospholipids including 57 phosphatidylcholines (PCs), 21 phosphatidylethanolamines (PEs), three phosphatidylglycerols (PGs) and one phosphatidylinositol (PI) were deduced. The UHPLC-QTOF/MS method is rapid, simple and credible for targeting analysis of glycerophospholipids of RAW264.7 macrophage.


Asunto(s)
Glicerofosfolípidos/análisis , Macrófagos/química , Animales , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Ratones , Fosfatidilcolinas , Fosfatidiletanolaminas , Fosfatidilgliceroles , Fosfatidilinositoles , Células RAW 264.7
17.
Radiol Artif Intell ; 5(3): e220246, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37293349

RESUMEN

Purpose: To develop a deep learning approach that enables ultra-low-dose, 1% of the standard clinical dosage (3 MBq/kg), ultrafast whole-body PET reconstruction in cancer imaging. Materials and Methods: In this Health Insurance Portability and Accountability Act-compliant study, serial fluorine 18-labeled fluorodeoxyglucose PET/MRI scans of pediatric patients with lymphoma were retrospectively collected from two cross-continental medical centers between July 2015 and March 2020. Global similarity between baseline and follow-up scans was used to develop Masked-LMCTrans, a longitudinal multimodality coattentional convolutional neural network (CNN) transformer that provides interaction and joint reasoning between serial PET/MRI scans from the same patient. Image quality of the reconstructed ultra-low-dose PET was evaluated in comparison with a simulated standard 1% PET image. The performance of Masked-LMCTrans was compared with that of CNNs with pure convolution operations (classic U-Net family), and the effect of different CNN encoders on feature representation was assessed. Statistical differences in the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and visual information fidelity (VIF) were assessed by two-sample testing with the Wilcoxon signed rank t test. Results: The study included 21 patients (mean age, 15 years ± 7 [SD]; 12 female) in the primary cohort and 10 patients (mean age, 13 years ± 4; six female) in the external test cohort. Masked-LMCTrans-reconstructed follow-up PET images demonstrated significantly less noise and more detailed structure compared with simulated 1% extremely ultra-low-dose PET images. SSIM, PSNR, and VIF were significantly higher for Masked-LMCTrans-reconstructed PET (P < .001), with improvements of 15.8%, 23.4%, and 186%, respectively. Conclusion: Masked-LMCTrans achieved high image quality reconstruction of 1% low-dose whole-body PET images.Keywords: Pediatrics, PET, Convolutional Neural Network (CNN), Dose Reduction Supplemental material is available for this article. © RSNA, 2023.

18.
Phytomedicine ; 98: 153979, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176533

RESUMEN

BACKGROUND: Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE: To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS: Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS: The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION: This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.

19.
J Pharm Biomed Anal ; 203: 114200, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34146951

RESUMEN

Raspberry, the fruit of Rubus Chingii Hu, has been used as a traditional Chinese medicine (TCM) to nourish kidney and strengthen Yang-qi. In order to determine the quality of raspberry, the quality markers (Q-markers) of raspberry that can improve renal function were investigated using UPLC-ESI-QTOF-MS in this study. The results of serum pharmacochemistry indicated that six components rutin, ellagic acid, kaempferol-3-rutinoside, astragalin, tiliroside, and goshonoside F5 in raspberry were absorbed into rat blood. The HEK293 cells treated with cisplatin were used to evaluate the kidney-protecting activity of these absorbed components. All these components could markedly inhibit cell damage induced by cisplatin and restore the levels of malondialdehyde (MDA) and catalase (CAT) in the cells, suggesting that these components may be the Q-markers of raspberry. More importantly, except for ellagic acid, other five Q-markers in raspberries from Dexing of Jiangxi province were higher than those from most of other areas. It is well known that Dexing raspberry is the Dao-di herbs raspberry used in the clinic of Chinese Medicine, demonstrating that these components could be used as Q-markers of raspberry. This study provides a reliable and valuable method for quality evaluation of raspberry.


Asunto(s)
Rubus , Animales , Ácido Elágico , Frutas , Células HEK293 , Humanos , Extractos Vegetales , Ratas
20.
Biochem Pharmacol ; 178: 114058, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32470546

RESUMEN

Celastrol, derived from the roots of the Tripterygium Wilfordi, has attracted interest for its potential anti-inflammatory and lipid-lowering activities. In the present study, the protective effect of celastrol on carbon tetrachloride (CCl4)-induced acute liver injury was investigated. Celastrol improved the increased transaminase activity, inflammation, and oxidative stress induced by CCl4, resulting in improved metabolic disorders found in mice with liver injury. Dual-luciferase reporter assays and primary hepatocyte studies demonstrated that the peroxisome proliferator-activated receptor α (PPARα) signaling mediated the protective effect of celastrol, which was not observed in Ppara-null mice, and co-treatment of wild-type mice with the PPARα antagonist GW6471. Mechanistically, PPARα deficiency potentiated CCl4-induced liver injury through a deoxycholic acid (DCA)-EGR1-inflammatory factor axis. These data demonstrate a novel role for celastrol in protection against acute liver injury through modulating PPARα signaling.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , PPAR alfa/metabolismo , Tripterygium , Triterpenos/uso terapéutico , Animales , Tetracloruro de Carbono/toxicidad , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , PPAR alfa/agonistas , PPAR alfa/antagonistas & inhibidores , Triterpenos Pentacíclicos , Raíces de Plantas , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda