Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Publication year range
1.
Artículo en Zh | WPRIM | ID: wpr-935831

RESUMEN

Objective: To explore the effect of csn2 gene deficiency on starvation tolerance and extracellular polysaccharides (EPS) synthesis in an oligotrophic environment of Streptococcus mutans (Sm). Methods: The csn2 gene deletion strains and complementary strains of Sm were cultivated and then an oligotrophic growth environment for Sm growth by setting different concentration gradient media were created. Cell growth in oligotrophic environment was detected by growth curve. Biofilm volume was measured by crystalline violet staining. Scanning electron microscopy (SEM) and laser confocal microscope were performed to observe the biofilm structure of Sm. The synthesis of EPS was measured by the anthrone-sulfuric acid method. The expression of genes related to EPS synthesis was evaluated by quantitative real-time PCR (qRT-PCR). Results: The growth curve results showed that the deletion of csn2 gene inhibited the growth of Sm under starvation stress. Furthermore, the results of laser confocal microscope showed that the biofilm EPS/bacteria ratios produced by the wild-type strain, csn2 gene-deficient strain and complement strains under nutrient sufficient culture conditions were 0.44±0.07, 1.05±0.13 and 0.57±0.08 respectively, while the ratios of EPS/bacteria in an oligotrophic environment were 0.93±0.24, 3.05±0.21 and 1.32±0.46 respectively, indicating that the deletion of csn2 gene enhanced the ability of extracellular polysaccharide synthesis of Sm in the oligotrophic environment. The expression levels of EPS synthesis-related genes gtfB and gtfC were up-regulated by 2.5 fold and 1.8 fold respectively and the expression level of gtfD was down-regulated by two-thirds. Conclusions: The csn2 gene deficiency showed multiple effects on the physiological functions and virulence characteristics of Sm, including starvation tolerance and EPS synthesis. These changes might be related to the shift of the complex regulative network caused by csn2 gene deletion.


Asunto(s)
Biopelículas , Microscopía Electrónica de Rastreo , Polisacáridos , Streptococcus mutans/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda