Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Publication year range
1.
Zhonghua Wai Ke Za Zhi ; (12): 1723-1726, 2008.
Artículo en Zh | WPRIM | ID: wpr-275979

RESUMEN

<p><b>OBJECTIVE</b>To explore the effect of the polyethylene glycol (PEG)-hydrogels to enhance the seeding-cells adhesion to the biomaterial scaffolds.</p><p><b>METHODS</b>Sixteen porcine aortic valves were decellularized with Triton X-100 and trypsin, then divided into A and B group, eight in each group. Group A: the donor goat's autologous bone marrow mesenchymal stem cells (BMSCs) Selected as the seeding-cells were encapsulated into the modified PEG-hydrogels to complete the process of the cells attaching to the acellular porcine aortic valves. Non-PEG but reservation of BMSCs was modified in Group B. After static culture for 7 d, the mono semilunar tissue engineering heart valve (TEHV) were implanted respectively into each donor goat's abdominal aortas. Gross and histology examination, ultrasonic scanning, electron microscopy observation and biomechanics detection were performed at 16 weeks after operation. The 8 native goat aortic valves from the donor goats were selected at the same time as control group (Group C).</p><p><b>RESULTS</b>There were much more improvements compared Group A to Group B (P < 0.05) in tensile strength [(12.9 +/- 1.3) MPa vs. (8.8 +/- 0.4) MPa], ratio of re-endothelial (84.6% vs. 14.8%) and mural thrombosis (0/8 vs. 8/8). The data illustrated the critical importance of BMSCs differentiation to endothelial and myofibroblast for remodeling into native tissue in microenvironment in vivo.</p><p><b>CONCLUSIONS</b>It is feasible to reconstruct TEHV efficiently by combining modified PEG-hydrogels with acellular biomaterial scaffold and autologous MSCs cells. It can improve the integration of the seeding-cells and scaffold. It can also protect the growth and differentiation of the BMSCs in the systemic circulation effectively.</p>


Asunto(s)
Animales , Válvula Aórtica , Biología Celular , Bioprótesis , Células de la Médula Ósea , Biología Celular , Células Cultivadas , Cabras , Prótesis Valvulares Cardíacas , Implantación de Prótesis de Válvulas Cardíacas , Hidrogeles , Células Madre Mesenquimatosas , Biología Celular , Polietilenglicoles , Porcinos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda