Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phytother Res ; 37(4): 1346-1365, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36447359

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by ß-amyloid (Aß) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aß in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aß25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aß25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.


Asunto(s)
Enfermedad de Alzheimer , Crataegus , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Flavonoides/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Hojas de la Planta
2.
J Ethnopharmacol ; 326: 117937, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38423409

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Moschus, first described in the Shennong's Classic of the Materia medicine, is a scarce and precious animal medicine. Modern pharmacological researches have suggested that Moschus has neuroprotective actions, and its mechanism is related to anti-inflammatory, antioxidant, and anti-apoptosis effects. Ferroptosis is one of the major pathologies of Alzheimer's disease (AD) and is widely implicated in the pathogenesis and progression of AD. Although previous studies have suggested that Moschus possesses neuroprotective effect, whether Moschus could mitigate neuronal damages by inhibiting the onset of ferroptosis is unknown in model cells of AD. AIM OF THE STUDY: The aim of study was to explore the water extract of Moschus (WEM) on ferroptosis caused by erastin and the potential mechanism. MATERIALS AND METHODS: Erastin was used to stimulate HT22 cells to form ferroptosis model to evaluate the anti-ferroptosis effect of WEM by cell counting kit-8 and lactic dehydrogenase (LDH) tests. The malondialdehyde (MDA) and glutathione (GSH) kits are used for detection of MDA and GSH levels, and 2',7'-dichlorofluorescein diacetate and C11 BODIPY 581/591 fluorescence probe are used for evaluation of reactive oxygen species (ROS) and lipid peroxide (LOOH) levels. And Western blot was used to test nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), and ferroptosis associated proteins including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter subunit (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin1 (FPN1), transferrin receptor (TFRC). In addition, the Nrf2 inhibitor ML385 was applied to verify whether WEM prevents erastin-induced ferroptosis by activating the Keap1/Nrf2 pathway. RESULTS: After WEM treatment, erastin-induced HT22 cell survival was significantly elevated, the accumulation of intracellular MDA, ROS, and LOOH were significantly reduced, the level of GSH and expressions of ferroptosis inhibitors GPX4 and SLC7A11 were significantly increased, and iron metabolism-related proteins TFRC, FPN1, and FTH1 were regulated. These effects of WEM are implemented by activating the Keap1/Nrf2 pathway. CONCLUSIONS: This study demonstrated that WEM could perform neuroprotective effects by alleviating ferroptosis, verified that WEM treatment of AD can be mediated by the Keap1/Nrf2 pathway, and provided theoretical support for the application of WEM in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Piperazinas , Animales , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda