RESUMEN
OBJECTIVE: The aim of the study was to examine the factors influencing the therapeutic effect of patients with systemic lupus erythematosus combined with immune thrombocytopenia (SLE-ITP) and develop a prediction model to predict the therapeutic effect of SLE-ITP. METHODS: Three hundred twenty-four SLE-ITP patients were retrieved from the electronic health record database of SLE patients in Jiangsu Province according to the latest treatment response criteria for ITP. We adopted the Cox model based on the least absolute shrinkage and selection operator to explore the impact factors affecting patient therapeutic effect, and we developed neural network model to predict therapeutic effect, and in prediction model, cost-sensitivity was introduced to address data category imbalance, and variational autoencoder was used to achieve data augmentation. The performance of each model was evaluated by accuracy and the area under the receiver operator curve. RESULTS: The results showed that B-lymphocyte count, H-cholesterol level, complement-3 level, anticardiolipin antibody, and so on could be used as predictors of SLE-ITP curative effect, and abnormal levels of alanine transaminase, immunoglobulin A, and apolipoprotein B predicted adverse treatment response. The neural network treatment effect prediction model based on cost-sensitivity and variational autoencoder was better than the traditional classifiers, with an overall accuracy rate closed to 0.9 and a specificity of more than 0.9, which was useful for clinical practice to identify patients at risk of ineffective treatment response and to achieve better individualized management. CONCLUSIONS: By predicting the curative effect of SLE-ITP, the severity of patients can be determined, and then the best treatment strategy can be planned to avoid ineffective treatment.
RESUMEN
Introduction: Feline parvovirus (FPV), a single-stranded DNA virus, is accountable for causing feline panleukopenia, a highly contagious and often lethal disease that primarily affects cats. The epidemiology prevalence and pathogenicity of FPV in certain regions of China, however, remains unclear. The aim of this research was to investigate the epidemiology of FPV in different regions of China in 2021 and compare its infectivity and pathogenicity. Methods: In this research, a total of 36 FPV strains were obtained from diverse regions across China. Phylogenetic analysis was performed based on the VP2 and NS1 sequences, and two representative strains, FPV027 and FPV072, which belonged to different branches, were selected for comparative assessment of infectivity and pathogenicity. Results and discussion: The results revealed that all strains were phylogenetically classified into two groups, G1 and G2, with a higher prevalence of G1 strains in China. Both in vitro and in vivo experiments demonstrated that FPV072 (G1 group) exhibited enhanced infectivity and pathogenicity compared to FPV027 (G2 Group). The structural alignment of the VP2 protein between the two viruses revealed mutations in residues 91, 232, and 300 that may contribute to differences in infectivity and pathogenicity. The findings from these observations will contribute significantly to the overall understanding of the molecular epidemiology of FPV in China and facilitate the development of an effective FPV vaccine.
RESUMEN
BACKGROUND/AIMS: Four-week treatment of linvencorvir (RO7049389) was generally safe and well tolerated, and showed anti-viral activity in chronic hepatitis B (CHB) patients. This study evaluated the efficacy, safety, and pharmacokinetics of 48-week treatment with linvencorvir plus standard of care (SoC) in CHB patients. METHODS: This was a multicentre, non-randomized, non-controlled, open-label phase 2 study enrolling three cohorts: nucleos(t)ide analogue (NUC)-suppressed patients received linvencorvir plus NUC (Cohort A, n=32); treatment-naïve patients received linvencorvir plus NUC without (Cohort B, n=10) or with (Cohort C, n=30) pegylated interferon-α (Peg-IFN-α). Treatment duration was 48 weeks, followed by NUC alone for 24 weeks. RESULTS: 68 patients completed the study. No patient achieved functional cure (sustained HBsAg loss and unquantifiable HBV DNA). By Week 48, 89% of treatment-naïve patients (10/10 Cohort B; 24/28 Cohort C) reached unquantifiable HBV DNA. Unquantifiable HBV RNA was achieved in 92% of patients with quantifiable baseline HBV RNA (14/15 Cohort A, 8/8 Cohort B, 22/25 Cohort C) at Week 48 along with partially sustained HBV RNA responses in treatment-naïve patients during follow-up period. Pronounced reductions in HBeAg and HBcrAg were observed in treatment-naïve patients, while HBsAg decline was only observed in Cohort C. Most adverse events were grade 1-2, and no linvencorvir-related serious adverse events were reported. CONCLUSION: 48-week linvencorvir plus SoC was generally safe and well tolerated, and resulted in potent HBV DNA and RNA suppression. However, 48-week linvencorvir plus NUC with or without Peg-IFN did not result in the achievement of functional cure in any patient.
Asunto(s)
Antivirales , Hepatitis B Crónica , Imidazoles , Pirazinas , Humanos , Antivirales/efectos adversos , Cápside , ADN Viral , Antígenos e de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Polietilenglicoles , ARN , Nivel de Atención , Resultado del TratamientoRESUMEN
Inspired by the remarkable electronic and optical properties of single walled carbon nanotubes (SWNTs), various molecular sensing devices with sensitivity down to the single molecule level have been developed. However, most sensing approaches such as field effect transistors or near infrared (NIR) fluorescence require the rigorous debundling and separation of metallic tubes and semiconducting tubes in order to reach the desired high sensitivity. Interestingly, all carbon nanomaterials including carbon nanotubes, graphite, graphene, and even amorphous carbon exhibit extremely strong π-plasmon absorption in the ultraviolet region. This strong absorption has been studied as an undesired optical background for applications based on visible and NIR absorptions. For the first time, we found that the strong π-plasmon absorption of SWNTs in the ultraviolet region is extremely sensitive to ion binding. It is even much more sensitive than the absorption in the visible and NIR regions. Herein, we present our first exploration into using the extremely strong plasmon absorption of SWNTs to develop a new sensing platform for the detection of metallic ions. The detection selectivity is realized by modifying the surface of SWNTs with molecular ligands that have a high specificity for metal ions. As a demonstration, the new method is applied to selectively detect iron ions (Fe3+) by modifying the surface of the SWNTs with deferoxamine (DFO), a natural bacterial siderophore, which has a high specificity and affinity for Fe3+. The selective detection of Fe3+ in both aqueous solution and complex rain water is achieved with a pM level of sensitivity and detection limit. In situ resonant Raman spectroscopy demonstrated that the sensitive detection possibly involves electron transfer between the formed Fe-DFO complexes and the SWNTs. We envisage that it can be used to detect other metal ions when a specific binding chelator is attached to the carbon nanotube surface.