RESUMEN
Two new tin(II) phosphates, SnII SnIV (PO4 )2 and SrSn(PO4 )PO2 (OH)2 , were synthesized by the high-temperature solution method and hydrothermal method, respectively. Theoretical study indicates that by introducing tin(II) with stereochemical activity lone pairs (SCALP) in metal phosphates, the birefringence was enhanced, 0.048@1064â nm for SnII SnIV (PO4 )2 and 0.080@1064â nm for SrSn(PO4 )PO2 (OH)2 .
RESUMEN
Performance enhancement induced by structural modification has long been the target in materials science fields. Direct evidence to witness the effectivity of one strategy is challenging and necessary. In this work, a tetrahedra-decoration strategy was proposed to improve the birefringent performance sharply, namely decorating the tetrahedra with a single linear [S2 ] unit. The strategy was verified by comprehensive characterization of two thiogermanates K2 BaGeS4 and K2 BaGeS5 , which crystallize in the same space group, have similar unit cells and the same units arrangements. Theoretical characterization verified that the [GeS5 ] group has much larger polarization anisotropy than [GeS4 ], further demonstrated that the linear [S2 ] led to the sharp birefringence enlargement of K2 BaGeS5 (0.19 vs 0.03 of K2 BaGeS4 ). This work provides a new guiding thought to improve the birefringence performance.
RESUMEN
The development of high-power solid-state lasers is in urgent need of new infrared nonlinear optical (IR NLO) materials with a wide band gap and a high laser-induced damage threshold. A new infrared nonlinear optical material Na2Ga2SiS6 has been synthesized for the first time, crystallizing in the Fdd2 (no. 43) noncentrosymmetric space group. Its three-dimensional tunnel framework consists of two typical NLO active motifs [GaS4] and [SiS4], with Na+ cations located inside the tunnels. Na2Ga2SiS6 exhibits comprehensive optical properties, namely, a wide transmission range, a high laser-induced damage threshold (10 × AgGaS2), a type-I phase-matching second-harmonic generation response (0.2 × AgGaS2), and especially a wide band gap (3.93 eV), which is the largest in the A2MIII2MIVQ6 (A = alkali metals; MIII = IIIA elements; MIV = IVA elements; Q = S and Se) family. Therefore, Na2Ga2SiS6 does not produce two-photon absorption under a 1064 nm laser pump and could be used in high-energy laser systems, which makes Na2Ga2SiS6 a promising candidate for high-energy IR NLO applications.
RESUMEN
In this work, the CO2 absorption working capacity and solubility in ionic liquids immobilized into porous solid materials (substrates) were studied both experimentally and theoretically. The CO2 absorption working capacity in the immobilized ionic liquids was measured experimentally. It was found that the CO2 absorption working capacity and solubility increased up to 10-fold compared to that in the bulk ionic liquids when the film thickness was nearly 2.5 nm in the [HMIm][NTf2] immobilized in the P25. Meanwhile, a new model was proposed to describe the Gibbs free energy of CO2 in the immobilized ionic liquids, and both macro- and microanalyses of the CO2 solubility in the confined ionic liquids were conducted. The theoretical investigations reveal that the substrate has a crucial effect on the gas solubility in the ionic liquid immobilized into the substrates, and the model performance was approved with a consideration of the substrate effect.
RESUMEN
Based on our previous experimental research, we studied the absorption of CO2 in the ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]), immobilized on TiO2 [rutile (110) ] with different thickness by molecular dynamics simulation. The effects of the properties (hydrophobicity and hydrophilicity) of solid interfaces were also studied with IL immobilized on graphite and TiO2, respectively. We studied the influence of the thickness of IL immobilized on TiO2 on the absorption of CO2 via structural and dynamical properties. The results show that the self-diffusion coefficients of IL and CO2 increase as the thickness of immobilized IL decreases. And the CO2 absorption capacity increases as the thickness of immobilized IL decreases as well. Additionally, more CO2 molecules are absorbed in the region near the solid interface as the thickness of IL decreases. For IL immobilized on graphite, the self-diffusion coefficients of cations and anions are larger than that of IL immobilized on TiO2 with the same thickness. They are also larger than nonimmobilized cations and anions.Besides, the CO2 absorption capacity of IL immobilized on TiO2 is the largest compared with IL immobilized on graphite and nonimmobilized IL with the same thickness. From our simulation work, we try to explore the microscopic mechanism that is unexplored by experimental work, and we found the important role of IL/solid interface for CO2 absorption in immobilized ILs.
RESUMEN
Streptococcus suis serotype 2 (S. suis 2) is a highly invasive pathogen in pigs and humans that can cause severe systemic infection. Sepsis and meningitis are the most common clinical manifestations of S. suis 2 infection. However, the mechanisms of S. suis 2 surviving in human blood remains unclear, so to identify novel virulence factors in evasion of polymorphonuclear leukocyte (PMN)-mediated innate immunity play important roles in developing therapies against S. suis 2 infection. Here, we found that S. suis 2 can escape phagocytic clearance by adenosine synthesis in blood. Through bioinformatics-based analyses we identified a cell wall-anchored protein harbors a 5'-nucleotidase signature sequence and evidence strongly indicated that it can convert adenosine monophosphate (AMP) to adenosine. It was designated as Ssads (the adenosine synthase of S. suis 2). Furthermore, we found that Ssads could impair PMN's defense against S. suis 2 with decreasing of oxidative activity and degranulation of PMNs in human blood via A2a receptors. Additionally, this enzyme-deï¬cient mutant was found to have diminished virulence in the piglet infection model. Taken together, these results indicate that Ssads play an important role in S. suis 2 escaping human innate immunity in the context of inhibiting PMN's activity by synthesis of adenosine.
Asunto(s)
Adenosina/biosíntesis , Interacciones Huésped-Patógeno , Evasión Inmune , Neutrófilos/inmunología , Neutrófilos/microbiología , Streptococcus suis/enzimología , Streptococcus suis/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Inmunidad Innata , Fagocitosis , Porcinos , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Apocynum pictum Schrenk is a semishrub of the Apocynaceae family with a wide distribution throughout the Tarim Basin that holds significant ecological, medicinal, and economic values. Here, we report the assembly of its chromosome-level reference genome using Nanopore long-read, Illumina HiSeq paired-end, and high-throughput chromosome conformation capture sequencing. The final assembly is 225.32â Mb in length with a scaffold N50 of 19.64â Mb. It contains 23,147 protein-coding genes across 11 chromosomes, 21,148 of which (91.36%) have protein functional annotations. Comparative genomics analysis revealed that A. pictum diverged from the closely related species Apocynum venetum approximately 2.2 million years ago and has not undergone additional polyploidizations after the core eudicot WGT-γ event. Karyotype evolution analysis was used to characterize interchromosomal rearrangements in representative Apocynaceae species and revealed that several A. pictum chromosomes were derived entirely from single chromosomes of the ancestral eudicot karyotype. Finally, we identified 50 members of the well-known stress-responsive WRKY transcription factor family and used transcriptomic data to document changes in their expression at 2 stages of drought stress, identifying a number of promising candidate genes. Overall, this study provides high-quality genomic resources for evolutionary and comparative genomics of the Apocynaceae, as well as initial molecular insights into the drought adaptation of this valuable desert plant.
RESUMEN
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Asunto(s)
Fibras de la Dieta , Manipulación de Alimentos , Fibras de la Dieta/análisis , Humanos , Industria de Alimentos , Animales , SolubilidadRESUMEN
Background: Fluoroquinolones, including ciprofloxacin, levofloxacin, and moxifloxacin, are extensively employed as broad-spectrum antibacterial agents. However, their use is discouraged during pregnancy due to potential adverse events (AEs). The aim of this study is to systematically investigate the association between fluoroquinolones (specifically ciprofloxacin, levofloxacin, and moxifloxacin) and AEs related to pregnancy, as well as their potential impact on congenital disorders. Methods: A disproportionality analysis was conducted utilizing FDA Adverse Event Reporting System (FAERS) data spanning from the first quarter of 2004 to September 2023. The objective was to identify potential AEs signatures associated with fluoroquinolones through conducting reporting odds ratios (RORs) and Bayesian confidence propagation neural networks (BCPNN). Assessing the potential risk of pregnancy-associated AEs involved comparing each fluoroquinolone with all other medications. Additionally, in-depth comparative analyses were carried out between various fluoroquinolones and a reference drug (azithromycin). Results: A total of 1159 cases were identified, involving AEs related to pregnancy and congenital disorders. Obvious disproportionate association of abortion spontaneous and other nine AEs was identified for fluoroquinolone during gestation. Upon comparison with all the other drugs, ciprofloxacin exhibited an elevated risk of spontaneous abortion, non-site specific bone disorders congenital and 10 other significant signals. Levofloxacin demonstrated an increased risk of congenital tongue disorders and three other significant signals. Moxifloxacin displayed a noteworthy signal indicating multiple congenital cardiac abnormalities. Conclusions: We present compelling evidence regarding pregnancy-related AEs and congenital disorders linked to fluoroquinolones. Considering perinatal and genotoxicity aspects, we explore whether levofloxacin or moxifloxacin might be preferable when fluoroquinolones are deemed necessary to balance the benefits of pregnant women and fetuses.
RESUMEN
Background: Fluoroquinolones are broad-spectrum antibiotics with significant antimicrobial activity. Despite their therapeutic benefits, they are associated with a range of adverse drug reactions (ADRs), particularly those affecting the central nervous system (CNS). This study aimed to analyze the psychiatric ADRs linked to fluoroquinolones using data from the FDA Adverse Event Reporting System (FAERS) database. Methods: A retrospective pharmacovigilance study was conducted using FAERS data from Q1 2004 to Q4 2023. The data processing phase involved the FDA-recommended deduplication method, and ADRs were classified according to Medical Dictionary for Regulatory Activities (MedDRA). Disproportionality analysis was performed using the reporting odds ratio (ROR), and statistical significance was assessed using the Chi-square test or Fisher's exact test. Results: The study identified 84,777 reports associated with fluoroquinolones, with 359,480 Preferred Terms-annotated entries, 27,816 of these reports were psychiatric ADRs. Mood disorders were the most frequently reported, including anxiety, depression, and delirium, with some reports escalating to suicidal ideation and behaviors. The Standardized MedDRA Query classification system was used to categorize these ADRs into Depression, Suicide/self-injury, Psychosis and psychotic disorders, and Non-infectious encephalopathy/delirium. Ciprofloxacin was most frequently linked to depression and suicidal ideation, while moxifloxacin showed a robust correlation with delirium. The risk of psychiatric ADRs varied by age group, with affective disorders more prevalent in adults under 65 and psychosis and delirium in those over 65. Conclusion: Fluoroquinolones are associated with a range of psychiatric ADRs, with notable differences between the drugs in the class. The study highlights the need for caution in prescribing fluoroquinolones, particularly for patients with pre-existing mental health conditions or those in higher risk age groups. The findings also underscore the importance of considering age-specific preventive strategies when administering these antibiotics.
RESUMEN
Brown adipose tissue (BAT) is critical for non-shivering thermogenesis making it a promising therapeutic strategy to combat obesity and metabolic disease. However, the regulatory mechanisms underlying brown fat formation remain incompletely understood. Here, we found SOX4 is required for BAT development and thermogenic program. Depletion of SOX4 in BAT progenitors (Sox4-MKO) or brown adipocytes (Sox4-BKO) resulted in whitened BAT and hypothermia upon acute cold exposure. The reduced thermogenic capacity of Sox4-MKO mice increases their susceptibility to diet-induced obesity. Conversely, overexpression of SOX4 in BAT enhances thermogenesis counteracting diet-induced obesity. Mechanistically, SOX4 activates the transcription of EBF2, which determines brown fat fate. Moreover, phosphorylation of SOX4 at S235 by PKA facilitates its nuclear translocation and EBF2 transcription. Further, SOX4 cooperates with EBF2 to activate transcriptional programs governing thermogenic gene expression. These results demonstrate that SOX4 serves as an upstream regulator of EBF2, providing valuable insights into BAT development and thermogenic function maintenance.
RESUMEN
Effectively promoting employees' intrapreneurial behavior has become the focus of enterprises. This study takes the middle and grassroots employees in enterprises as subjects and explores the configuration effect of multiple influencing factors on employees' intrapreneurial behavior. Based on employee expectation theory and individual-environment matching theory, this study collates six influencing factors: entrepreneurial self-efficacy, entrepreneurial competence, task school level, perceived value, management support, and reward mechanism. A total of 163 samples were obtained, and the qualitative comparative analysis method based on fuzzy set was used to analyze the influence mechanism and result path of employees' intrapreneurial behavior from the perspective of the interaction between individual factors and organizational factors. Six influencing paths of employees' high intrapreneurial behavior were found, which can be divided into ability-driven and value-driven factors, revealing that the six factors can produce equivalent results in different configurations. Furthermore, five influencing paths of employees' non-high intrapreneurial behavior were divided into three types: ability obstacle type, perception obstacle type, and value obstacle type. These have an asymmetric causal relationship with employees' high intrapreneurial behavior. This study provides management support for effectively stimulating employees' intrapreneurial behavior.
RESUMEN
Regulating the crystal structure by cations is one of the most effective methods to adjust the performances of optical materials and enrich the structural chemistry of solid-state inorganic crystals. In this work, only boron-thiophosphate BPS4 (BPS) was used as the template. By introducing alkali metal ions, Na+ and K+, the synthesis, structural revolution, and bandgap adjustment were studied. Namely, the first quaternary boron-thiophosphates, AB3P2S10 (A = Na, K) (ABPS) were obtained, whose anion skeleton decreased to zero dimension from one dimension (1D) in BPS. In addition, the bandgap showed obvious improvement from 3.30 (BPS) to 3.42 and 3.49 eV (ABPS). Structural studies and theoretical analyses indicated that the insert of cations separates the infinite chains to [B3P2S10] clusters, localizes the electrons around the S2- in [BS4] and [PS4] groups, and widens the bandgaps. This work could enrich the structural chemistry of boron-thiophosphates and reveal that ionic bonds can modulate the covalent skeleton and show the effect on the optical properties.
RESUMEN
With the ever-growing digitalization and mobility of electric transportation, lithium-ion batteries are facing performance and safety issues with the appearance of new materials and the advance of manufacturing techniques. This paper presents a systematic review of burgeoning multi-scale modelling and design for battery efficiency and safety management. The rise of cloud computing provides a tactical solution on how to efficiently achieve the interactional management and control of power batteries based on the battery system and traffic big data. The potential of selecting adaptive strategies in emerging digital management is covered systematically from principles and modelling, to machine learning. Specifically, multi-scale optimization is expounded in terms of materials, structures, manufacturing and grouping. The progress on modelling, state estimation and management methods is summarized and discussed in detail. Moreover, this review demonstrates the innovative progress of machine learning based data analysis in battery research so far, laying the foundation for future cloud and digital battery management to develop reliable onboard applications.
RESUMEN
PURPOSE: Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. METHODS: We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. RESULTS: High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into "hot", "intermediate" and "cold" groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. CONCLUSION: Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.
RESUMEN
The hot metal gas forming process can significantly improve the formability of a tube and is suitable for the manufacturing of parts with complex shapes. In this paper, a double wave tube component is studied. The effects of different temperatures (400 °C, 425 °C, 450 °C and 475 °C) and different pressures (1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa and 3 MPa) on the formability of 6063 aluminum alloy tubes were studied. The influence of hot metal gas forming process parameters on the microstructure was analyzed. The optimal hot metal gas forming process parameters of 6063 aluminum alloy tubes were explored. The results show that the expansion rate increases with the increase in pressure. The pressure affects the deformation of the tube, which in turn has an effect on the dynamic softening of the material. The expansion rate of parts also increases with the increase in forming temperature. The increased deformation temperature is beneficial to the dynamic recrystallization of 6063, resulting in softening of the material and enhanced deformation uniformity between grains, so that the formability of the material is improved. The optimum hot metal gas forming process parameters of 6063 aluminum alloy tubes are the temperature of 475 °C and the pressure of 2.5 MPa; the maximum expansion ratio is 41.6%.
RESUMEN
This study aims to investigate the feasibility of hydroforming (HF) technology coupled with response surface optimization for producing high-quality five-branched AISI 304 stainless steel tubes with different diameters, addressing the shortcomings of traditional manufacturing processes. Conventional techniques often result in issues with multiple consumables, low precision, and subpar performance. The research focuses on finding optimal forming parameters for a more effective process. Initial attempts at a five-branched tube proved unfeasible. Instead, a multi-step forming approach was adopted, starting with the formation of the upper branch tube followed by the two reducing lower branch tubes, a strategy termed "first three, then five". This method, enhanced by a subsequent solid solution treatment, yielded promising results: the combined height of the upper and lower branches was 141.1 mm, with a maximum thinning rate of 26.67%, reduced to 25.33% after trimming. These outcomes met the product usage requirements. Additionally, the study involved designing and developing dies for manufacturing five-branched tubes with different diameters using servo HF equipment. The effectiveness of the multi-step forming process and parameter combinations was confirmed through experimental validation, aligning closely with the FE simulation results. The maximum thinning rate observed in the experiments was 27.60%, indicating that FE simulation and response surface methodology can effectively guide the production of high-quality parts with superior performance.
RESUMEN
BACKGROUND: Depression is a common psychiatric disorder associated with defects in GABAergic (gamma-aminobutyric acidergic) neurotransmission. α-Dystroglycan (α-DG), a cell adhesion molecule known to be essential for skeletal muscle integrity, is also present at inhibitory synapses in the central nervous system and forms a structural element in certain synapses. However, the role of α-DG in the regulation of depressive-like behaviors remains largely unknown. METHODS: Depressive-like behaviors were induced by chronic social defeat stress in adult male mice. Surface protein was extracted by a biotin kit, and the expression of protein was detected by Western blotting. Intrahippocampal microinjection of the lentivirus or adeno-associated virus or agrin intervention was carried out using a stereotaxic instrument and followed by behavioral tests. Miniature inhibitory postsynaptic currents were recorded by whole-cell patch-clamp techniques. RESULTS: The expression of α-DG and glycosylated α-DG in the ventral hippocampus was significantly lower in chronic social defeat stress-susceptible male mice than in control mice, accompanied by a decreased surface expression of GABAA receptor γ2 subunit and reduced GABAergic neurotransmission. RNA interference-mediated knockdown of Dag1 increased the susceptibility of mice to subthreshold stress. Both in vivo administration of agrin and overexpression of like-acetylglucosaminyltransferase ameliorated depressive-like behaviors and restored the decrease in surface expression of GABAA receptor γ2 subunit and the amplitude of miniature inhibitory postsynaptic currents in chronic social defeat stress-exposed mice. CONCLUSIONS: Our findings demonstrate that glycosylated α-DG plays a role in the pathophysiological process of depressive-like behaviors by regulating the surface expression of GABAA receptor γ2 subunit and GABAergic neurotransmission in the ventral hippocampus.
Asunto(s)
Distroglicanos , Receptores de GABA-A , Agrina/metabolismo , Animales , Distroglicanos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Long noncoding RNAs (lncRNAs) are involved in various biological processes and implicated in the regulation of neuronal activity, but the potential role of lncRNAs in depression remains largely unknown. Here, we identified that lncRNA Gm2694 was increased in the medial prefrontal cortex (mPFC) of male mice subjected to chronic social defeat stress (CSDS). The down-regulation of Gm2694 in the mPFC alleviated CSDS-induced depressive-like behaviors through enhanced excitatory synaptic transmission. Furthermore, we found that Gm2694 preferentially interacted with the carboxyl-terminal domain of 78-kilodalton glucose-regulated protein (GRP78), which abrogated GRP78 function and disrupted endoplasmic reticulum homeostasis, resulting in a reduction of the surface expression of AMPA receptors (AMPARs). Overexpression of GRP78 in the mPFC promoted the surface expression of AMPARs and attenuated the CSDS-induced depressive-like behaviors of mice. Together, our results unraveled a previously unknown role of Gm2694 in regulating endoplasmic reticulum homeostasis and excitatory synaptic transmission in depression.
Asunto(s)
Enfermedad Injerto contra Huésped , ARN Largo no Codificante , Masculino , Ratones , Animales , Chaperón BiP del Retículo Endoplásmico , ARN Largo no Codificante/genética , Retículo Endoplásmico , Homeostasis , Regulación hacia Abajo , Receptores AMPA/genéticaRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs) are pollutants commonly present in the environment. Some NPAHs are considered to have more severe toxic effects than their parent PAHs. The existence of 16 PAHs (678.5-3817.8â¯ng/L in wastewater, 499.9 ng/g-1239.6â¯ng/g in sludge) and 5 NPAHs (175.8-1392.4â¯ng/L in wastewater, 483.5 ng/g-2763.1â¯ng/g in sludge) was determined in a biological wastewater treatment plant (WWTP) in Qingdao, China. Anthracene and naphthalene were the predominant PAHs, and 2-nitrofluorene and 9-nitroanthracene were the predominant NPAHs. Petroleum, liquid fossil fuel combustion and exhaust emissions were the main sources of PAHs and NPAHs in this study. In both the sequencing batch reactor/moving-bed biofilm (SBR/MBBR) and the anaerobic-anoxic-aerobic (A2O) process, low-molecular-weight PAHs were mainly removed through volatilization and biodegradation/biotransformation. Meanwhile, the removal of high-molecular-weight PAHs and NPAHs depended on adsorption and sedimentation. The transformation from PAHs to NPAHs mainly occurred in the aqueous-phase, especially in summer and that was confirmed by mass flow and ratios variation. Overall, the removal capacity of the A2O process for PAHs and NPAHs was better than that of the SBR/MBBR process. Tertiary treatment processes had little effect or even a negative effect on the removal of PAHs and NPAHs.