RESUMEN
Developing ultrasensitive lateral flow immunoassays (LFIAs) has garnered significant attention in the field of point-of-care testing. In this study, a trimetallic dendritic nanozyme (Pd@Pt-Ru) was synthesized through Ru deposition on a Pd@Pt core and utilized to enhancing the sensitivity of LFIAs. Pd@Pt-Ru exhibited a Km value of 5.23 mM for detecting H2O2, which indicates an H2O2 affinity comparable with that of horseradish peroxidase. The Ru surface layer reduces the activation energy barrier, which increases the maximum reaction rate. As a proof of concept, the proposed Pd@Pt-Ru nanozyme was incorporated into LFIAs (A-Pd@Pt-Ru-LFIAs) for detecting human chorionic gonadotropin (hCG). Compared with conventional gold nanoparticle (AuNP)-LFIAs, A-Pd@Pt-Ru-LFIAs demonstrated 250-fold increased sensitivity, thereby enabling a visible detection limit as low as 0.1 IU/L. True positive and negative rates both reached 100%, which renders the proposed Pd@Pt-Ru nanozyme suitable for detecting hCG in clinical samples.
Asunto(s)
Gonadotropina Coriónica , Peróxido de Hidrógeno , Límite de Detección , Nanopartículas del Metal , Paladio , Platino (Metal) , Rutenio , Paladio/química , Platino (Metal)/química , Inmunoensayo/métodos , Humanos , Rutenio/química , Gonadotropina Coriónica/análisis , Nanopartículas del Metal/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Oro/química , Dendrímeros/química , Técnicas Biosensibles/métodos , Peroxidasa/química , CatálisisRESUMEN
In order to realize the miniaturization of the dual-band system, the monolithic compressed folding imaging lens (CFIL) is designed for infrared/laser dual-band in this paper. The relationship among the back focal length, field of view, pupil diameter, and central obscuration of the CFIL are derived. The design method of the dual-band CFIL is given, and the stray light of the CFIL can be suppressed by the double-layer hood structure. According to the design method of the CFIL, the infrared/laser dual-band can be applied by a monolithic optical element. The design results show that the minimum MTF for all fields of view in the infrared band is greater than 0.125 at 42lp/mm, the spot uniformity in the laser band is greater than 90%, and the total system length is only 0.305 times the focal length. After tolerance analysis, the MTF of CFIL is greater than 0.1, and the spot diagram is less than 880µm. The working temperature of the system is -20â¼50°C, and the compensation distance is given. After stray light optimization, The point source transmittance (PST) value in the infrared band is reduced by 2 to 4 orders of magnitude, and the PST value in the laser band is reduced by 1 to 5 orders of magnitude. Compared with the traditional coaxial reflective system, the infrared/laser dual-band CFIL has only one lens, and the optical structure is compact. It provides a new idea for the integration and miniaturization of the multi-band system.
RESUMEN
BACKGROUND: Syphilis, caused by Treponema pallidum (T. pallidum), is a multi-organ, multiple systems, multi-stage sexually transmitted diseases with various clinical manifestations, among of which pathological lesions of skin and mucosa are the typical clinical manifestations of syphilis. However, the immunopathogenesis of this process is poorly understood. T. pallidum flagellin FlaA2, as a part of the important organelle responsible for the causative agent's motility, may contributes to the host skin inflammatory response. OBJECTIVES: To determine the mechanisms of T. pallidum FlaA2 stimulating the expression of pro-inflammatory cytokines in human keratinocytes. METHODS: Recombinant FlaA2 protein was performed to stimulate human keratinocytes. The mRNA transcription levels and protein expression levels of IL-6 and IL-8 were detected by qRT-PCR and ELISA, respectively. Western blot was used to detect the total protein and phosphorylation levels of ERK, p38, JNK and NF-κB, respectively. The intracellular location of NF-κB p65 was detected by immunofluorescence staining. RESULTS: Recombinant FlaA2 could considerably induced the expression of pro-inflammation cytokines IL-6 and IL-8 in HaCaT cells, and FlaA2-induced IL-6 and IL-8 secretion could be decreased by inhibiting TLR2 using pZERO-hTLR2. Further investigation showed that FlaA2 could activate the phosphorylation of ERK, p38 and IκBα and FlaA2-stimulated secretion of IL-6, IL-8 were attenuated by ERK, p38 and NF-κB inhibitors in HaCaT cells. Moreover, FlaA2 activates the ERK, p38 and NF-κB pathways through TLR2 signaling pathway in HaCaT cells. CONCLUSIONS: From the findings above, these results confirm that T. pallidum FlaA2 activates ERK, p38 and NF-κB signaling pathway through TLR2 pathway to induce the production of IL-6 and IL-8, which could contribute to enhance the understanding of the skin inflammatory response induced by the pathogen in syphilis patients.
Asunto(s)
Sífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Treponema pallidum/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos/metabolismo , Factores Inmunológicos/metabolismoRESUMEN
Spirochetes are a large group of prokaryotes that originated from Gram-negative bacteria and are capable of causing a variety of human and animal infections. However, the pathogenesis of spirochetes remains unclear, as different types of spirochetes play pathogenic roles through different pathogenic substances and mechanisms. To survive and spread in the host, spirochetes have evolved complicated strategies to evade host immune responses. In this review, we aimed to provide a comprehensive overview of immune evasion strategies in spirochetes infection. These strategies can be explained from the following points: (i) Antigenic variation: random, unidirectional, and segmental conversion of the gene to evade immune surveillance; (ii) Overcoming the attack of the complement system: recruitment of host complement regulators, cleavage of complement components and inhibition of complement activation to evade immune defenses; (iii) Interfering with immune cells to regulating the immune system; (iv) Persistent infection: invading and colonizing the host cell to escape immune damage.
Asunto(s)
Evasión Inmune , Spirochaetales , Animales , Proteínas del Sistema Complemento , Humanos , InmunidadRESUMEN
It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high-specificity and high-sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer-based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX-based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.
Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Mycobacterium tuberculosis , Ácidos Nucleicos , Humanos , Técnica SELEX de Producción de Aptámeros/métodos , COVID-19/diagnóstico , LigandosRESUMEN
Recent studies on the roles and mechanisms of LL-37 have demonstrated that LL-37 can either serve as a tumor promoter or a tumor suppressor in different cancers. The expression and function of LL-37 in hepatocellular carcinoma (HCC), however, remain unclear. In the present study, we confirmed the down-regulation of LL-37 in HCC tissues and the synthetic LL-37 peptide reduced the viability of HCC cells in a dose-dependent manner. Furthermore, we demonstrated that LL-37 peptide significantly delayed G1-S transition in Huh7 but not in HepG2 cells by suppressing CyclinD1-CDK4-p21 checkpoint signaling pathway. However, LL-37 caused no obvious apoptosis both in Huh7 and HepG2 cells, though the expression of apoptosis-related genes was strongly changed through qRT-PCR analysis, hinting at the possibility that LL-37 participates in regulating the apoptosis of HCC cells, but may not the only mechanism. Besides, we also identified that LL-37 treatment strongly inhibited the mRNA expression of TLR4 both in Huh7 and HepG2 cells, accompanied with the reduced expression of genes responsible for pro-inflammatory cytokines, including IL-8 and IL-6. In conclusion, our research suggested that LL-37 may be associated with the development of HCC.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Citocinas/metabolismo , Neoplasias Hepáticas/patología , Anciano , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , CatelicidinasRESUMEN
Syphilis is a chronic bacterial infection caused by Treponema pallidum (T pallidum) and the pathogenesis that T pallidum infection induces immunopathological damages in skin and other tissues remains unclear. We have previously reported that recombinant flagellins of T pallidum can elicit IL-6 and IL-8 transcriptions via TLR5 pathway. To identify the domains which induced the pro-inflammatory activity and the importance of the interactions between TLR5 and domains, homology-based modelling and comparative structural analyses revealed that Tpflagellins can combine with TLR5 directly. Deletion mutations showed that the ND1 domain binding to TLR5 is required but not sufficient in TLR5 activation. Moreover, site-directed mutagenesis analysis indicated that the arginine residue (Tpflagellins R89) of the ND1 domain and its adjacent residues (Tpflagellins L93 and E113) constitute a hot spot that elicits IL-6, IL-8 transcriptions and TLR5 activation, and affects the binding of Tpflagellins to TLR5. Taken together, these results give insight into the pathogenesis of T pallidum and may contribute to the future design of Tpflagellins-based therapeutics and syphilis vaccine.
Asunto(s)
Flagelina/genética , Flagelina/metabolismo , Receptor Toll-Like 5/metabolismo , Treponema pallidum/genética , Treponema pallidum/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Unión Proteica/genética , Transducción de Señal/genética , Sífilis/genética , Sífilis/metabolismo , Células THP-1 , Transcripción Genética/genéticaRESUMEN
The design of transparent optical materials with stimulated Brillouin scattering (SBS) suppression is a topic of current interest. We measured two-photon absorption (2PA) cross-section σ2PA and Brillouin gain factor gB of a suspension of hexagonal boron nitride (hBN) in N-methyl-2-pyrrolidone at the second harmonic of a Nd:YAG laser. SBS exhibits a significant quenching with hBN concentration, like previously observed in graphene suspension. The melting of hBN flakes due to a large 2PA and the related changes in the acoustic damping coefficient explain the quenching mechanism.
RESUMEN
Graphene-ZnO (GZO) nanocomposites were synthesized by a modified solvothermal method, and characterized by transmission electron microscopy, x-ray diffraction, Raman spectra, and UV-vis absorption spectra. The controllable nonlinear optical (NLO) properties of as-prepared GZO nanocomposites were tested by an open-aperture Z-scan method with 1030 nm fs laser pulses; the tested results showed that there were five-photon absorption (5PA) at 46.8 GW cm-2, 3PA at 28.1 GW cm-2, 2PA at 18.7 GW cm-2, and a vital change from saturable absorption (SA) to reverse SA (RSA) with the increase of incident intensity. This was the first time that 5PA was found in GZO nanocomposites at such a low intensity, 46.8 GW cm-2. The tunable NLO property from SA to RSA and controllable multi-photon absorption provided a facile approach for their applications in optical, optoelectronic devices, and information storage.
RESUMEN
Syphilis is a chronic disease caused by Treponema pallidum and the pathogenesis is still unclear. T. pallidum infection induced inflammatory responses are involved in the immunopathological damage in skin and other tissues. Flagellin, the monomeric subunit of bacterial flagella, is a classic pathogen associated molecular patterns (PAMPs) that interacts to TLR5 and induces inflammatory responses. Keratinocytes, as immune sentinels recognize the PAMPs via TLRs, play an important role in skin innate immune response. Matrix metalloproteinases (MMPs) expressed by keratinocytes are involved in skin inflammatory responses and promoting pathogens invasion. In this study, we demonstrate that FlaB1, FlaB2 and FlaB3, the flagellins of T. pallidum, induced MMP-9 and MMP-13 production in human immortalized keratinocytes cell line HaCaT. Silencing of TLR5, but not TLR2 and TLR4 attenuated MMP-9 and MMP-13 expressions induced by T. pallidum flagellins. MMP-9 and MMP-13 expressions were also be abrogated by transfection with a dominant negative (DN) plasmid of MyD88. We also found that treatment of HaCaT cells with FlaB1, FlaB2 and FlaB3 activate the MAPK and NF-κB signaling pathways. Inhibited of ERK, JNK, p38 and NF-κB suppressed MMP-9 expression induced by the FlaB1. MMP-13 expression was found to be suppressed by pretreatment with inhibitors of ERK, JNK and NF-κB, but not p38. These findings demonstrate that T. pallidum flagellins (FlaB1, FlaB2 or FlaB3) can stimulate MMP-9 and MMP-13 expression through TLR5 and MAPK/NF-κB signaling pathways in human epidermal keratinocytes, which could contribute to the pathogenesis of T. pallidum infection.
Asunto(s)
Flagelina/metabolismo , Queratinocitos/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 5/metabolismo , Células Cultivadas , Humanos , Queratinocitos/citología , Transducción de Señal , Treponema pallidum/metabolismoRESUMEN
Nanocomposites of layered MoS2 and multi-walled carbon nanotubes (CNTs) with core-shell structure were prepared by a simple solvothermal method. The formation of MoS2 nanosheets on the surface of coaxial CNTs has been confirmed by scanning electron microscopy, transmission electron microscopy, absorption spectrum, Raman spectroscopy, and X-ray photoelectron spectroscopy. Enhanced third-order nonlinear optical performances were observed for both femtosecond and nanosecond laser pulses over a broad wavelength range from the visible to the near infrared, compared to those of MoS2 and CNTs alone. The enhancement can be ascribed to the strong coupling effect and the photoinduced charge transfer between MoS2 and CNTs. This work affords an efficient way to fabricate novel CNTs based nanocomposites for enhanced nonlinear light-matter interaction. The versatile nonlinear properties imply a huge potential of the nanocomposites in the development of nanophotonic devices, such as mode-lockers, optical limiters, or optical switches.
RESUMEN
BACKGROUND: Over the past decade, the incidence of syphilis and widespread macrolide resistance in its etiological agent, Treponema pallidum subsp. pallidum, have become a major health concern across countries, including China. Regional trends in subtypes and antibiotic resistance can be monitored effectively by molecular surveillance programs. In this study, whole blood samples were used to assess circulating T. pallidum strains collected from various regions of Hunan, China, between 2013 and 2015. METHODS: Traditional polymerase chain reaction, targeting polA, tpp47, bmp, and tp0319 genes, was used as preliminary screening assay. About 455 polymerase chain reaction-positive specimens were obtained from 2253 whole blood samples of patients with secondary or latent syphilis. Molecular subtyping was performed using a Centers for Disease Control and Prevention-based typing method combined with an analysis of the variable region of tp0548 gene. Resistance to macrolides was analyzed by examining point mutations in 23S rRNA, and the presence of the G1058C point mutation within 16S rRNA associated with decreased susceptibility to doxycycline was assessed. RESULTS: Circulating T. pallidum strains were resolved into 32 subtypes, among which subtype 14d/f was predominant. A2059G mutation in 23S rRNA, and the G1058C mutation in 16S rRNA was absent, but the prevalence of A2058G mutation in 23S rRNA was 97.5%. CONCLUSIONS: We found that it is possible to use whole blood to evaluate molecular subtypes and monitor antibiotic resistance in circulating T. pallidum strains, especially when chancres are absent. High frequency of macrolide-resistant T. pallidum indicates that macrolide antibiotics, such as azithromycin, should be avoided as a treatment option for syphilis in Hunan, China.
Asunto(s)
Sífilis/epidemiología , Treponema pallidum/clasificación , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/microbiología , China/epidemiología , Farmacorresistencia Bacteriana/genética , Femenino , Genotipo , Humanos , Incidencia , Macrólidos/farmacología , Macrólidos/uso terapéutico , Persona de Mediana Edad , Tipificación Molecular , Mutación Puntual , Prevalencia , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Sífilis/tratamiento farmacológico , Sífilis/microbiología , Sífilis Latente/tratamiento farmacológico , Sífilis Latente/epidemiología , Sífilis Latente/microbiología , Treponema pallidum/efectos de los fármacos , Treponema pallidum/genética , Treponema pallidum/aislamiento & purificación , Adulto JovenRESUMEN
Chlamydia psittaci is a zoonotic pathogen with a broad host range that can lead to severe respiratory and systemic disease in humans. Currently, an effective commercial vaccine against C. psittaci infection is not available. The chlamydial plasmid is an important virulence factor and encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. In this study, we assessed the efficacy of vaccination with plasmid proteins at preventing C. psittaci lung infection in a murine model. BALB/c mice were immunized intraperitoneally, three times at 2-week intervals, with purified recombinant CPSIT_p8 protein and then infected with C. psittaci. Immunization significantly decreased chlamydial load in the lungs of infected mice, resulted in a lower level of IFN-γ, and reduced the extent of inflammation. In vivo or in vitro neutralization of C. psittaci with sera collected from immunized mice did not reduce the amount of viable C. psittaci in the lungs of mice, indicating that CPSIT_p8-specific antibodies do not have neutralizing capacity. Furthermore, confocal fluorescence microscopy using a mouse anti-CPSIT_p8 antibody revealed that CPSIT_p8 was localized inside the inclusion of C. psittaci 6BC-infected cells. Our results demonstrate that CPSIT_p8 protein induces significant protective immunity against challenge with C. psittaci in mice and represents a promising new vaccine candidate for the prevention of C. psittaci infection.
Asunto(s)
Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/prevención & control , Chlamydophila psittaci/inmunología , Plásmidos/inmunología , Proteínas Recombinantes/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Carga Bacteriana , Proteínas Bacterianas/genética , Infecciones por Chlamydia/inmunología , Clonación Molecular , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Células HeLa , Humanos , Inmunización , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/genéticaRESUMEN
Syphilis, a sexually transmitted disease caused by Treponema pallidum subsp. pallidum (T. pallidum), can lead to a complication known as neurosyphilis. Neurosyphilis affects multiple components of the nervous system, including the meninges, blood vessels, brain parenchyma, and others, significantly impacting the central nervous system (CNS). Despite the effective control of syphilis spread by antibiotics, recent years have seen a resurgence in incidence among high-risk populations. The blood-brain barrier (BBB) is a critical defense for the CNS, preventing toxins and pathogens, including viruses, from entering and ensuring CNS function. The exact mechanisms of how T. pallidum penetrates the BBB are still not fully understood. Extensive research suggests that T. pallidum can disrupt endothelial cells and intercellular junctions, as well as induce abnormal activation of immune cells and aberrant cytokine expression, potentially facilitating its breach of BBB. Based on current research, we focus on the detrimental effects of cytokines on BBB integrity. We have also summarized the pathways T. pallidum uses to penetrate cellular barriers. Understanding the interaction between T. pallidum and the BBB is essential for revealing neurosyphilis pathogenesis and developing new therapies. DATA AVAILABILITY: Data used to support the findings of this study are included in the article.
RESUMEN
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Asunto(s)
Infecciones por VIH , MicroARNs , Enfermedades de Transmisión Sexual , Humanos , MicroARNs/genética , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/genéticaRESUMEN
Achieving optically controlled nanomachine engineering can satisfy the touch-free and non-invasive demands of optoelectronics, nanotechnology, and biology. Traditional optical manipulations are mainly based on optical and photophoresis forces, and they usually drive particles in gas or liquid environments. However, the development of an optical drive in a non-fluidic environment, such as on a strong van der Waals interface, remains difficult. Herein, we describe an efficient 2D nanosheet actuator directed by an orthogonal femtosecond laser, where 2D VSe2 and TiSe2 nanosheets deposited on sapphire substrates can overcome the interface van der Waals forces (tens and hundreds of megapascals of surface density) and move on the horizontal surfaces. We attribute the observed optical actuation to the momentum generated by the laser-induced asymmetric thermal stress and surface acoustic waves inside the nanosheets. 2D semimetals with high absorption coefficient can enrich the family of materials suitable to implement optically controlled nanomachines on flat surfaces.
RESUMEN
The outer membrane proteins (OMPs) of Treponema pallidum subsp. pallidum (T. pallidum), the etiological agent of the sexually transmitted disease syphilis, have long been a hot research topic. Despite many hurdles to studying the pathogen, especially the inability to manipulate T. pallidum in vitro genetically, considerable progress has been made in elucidating the structure, pathogenesis and functions of T. pallidum OMPs. In this review, we integrate this information to garner fresh insights into the role of OMPs in the diagnosis, pathogenicity and vaccine development of T. pallidum. Collectively, the essential scientific discussions herein should provide a framework for understanding the current status and prospects of T. pallidum OMPs.
Asunto(s)
Sífilis , Treponema pallidum , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Sífilis/diagnóstico , Treponema/metabolismo , Treponema pallidum/genéticaRESUMEN
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
RESUMEN
Treponema pallidum is a "stealth pathogen" responsible for infectious sexually transmitted diseases. Although neutrophils are usually present in skin lesions of early syphilis, the role of these cells in T. pallidum infection has barely been investigated. Neutrophils are short-lived cells that undergo constitutive apoptosis, and phagocytosis usually accelerates this process. Here, we demonstrated that human polymorphonuclear neutrophils (hPMNs) could phagocytose T. pallidum in vitro. An unexpected discovery was that T. pallidum inhibited hPMNs apoptosis markedly in an opsonin-independent manner. Furthermore, this phenomenon was not affected by bacterial viability, as detected by annexin V, morphology studies, and TUNEL staining. Exploration of the underlying mechanism showed that expression of the cleaved forms of caspase-3, -8, and -9 and effector caspase activity were diminished significantly in T. pallidum-infected hPMNs. T. pallidum also impaired staurosporine- and anti-Fas-induced signaling for neutrophil apoptosis. Of note, these effects were accompanied by inducing the autocrine production of the anti-apoptotic cytokine IL-8. Taken together, our data revealed that T. pallidum could inhibit the apoptosis of hPMNs through intrinsic and extrinsic pathways and provide new insights for understanding the pathogenicity mechanisms of T. pallidum.
Asunto(s)
Apoptosis , Neutrófilos , Treponema pallidum , Apoptosis/inmunología , Apoptosis/fisiología , Humanos , Neutrófilos/metabolismo , Proteínas Opsoninas , Fagocitosis , Treponema pallidum/inmunologíaRESUMEN
Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a major public health problem worldwide. Recent increases in the number of syphilis cases, in addition to the lack of an efficient vaccine against T. pallidum for humans, highlights an urgent need for the design and development of an efficacious syphilis vaccine. Here, we assess the vaccine potential of the adhesion protein Tp0136 and the outer membrane protein Tp0663. Rabbits were subcutaneously immunized with recombinant proteins Tp0136, Tp0663, or control PBS. Immunization with Tp0136 or Tp0663 generated a strong humoral immune response with high titers of IgG, as assessed by ELISA. Moreover, animals immunized with Tp0136 or Tp0663 exhibited attenuated lesion development, increased cellular infiltration at the lesion sites, and inhibition of treponemal dissemination to distant organs compared to the unimmunized animals. These findings indicate that Tp0136 and Tp0663 are promising syphilis vaccine candidates. Furthermore, these results provide novel and important information for not only understanding the pathogenic mechanisms of spirochetes, but also the development of spirochete-specific subunit vaccines.