Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Inorg Chem ; 63(29): 13392-13401, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38991459

RESUMEN

Fused porphyrinoids have received increasing interest in light of their extended conjugation and unique coordination behavior. On the basis of our previously reported multiply fused pentaphyrin isomers 1 and 2, a novel isomer 3 has been synthesized in this work. 3 possesses a hexacyclic fused moiety with a nearly coplanar CCNN cavity involving an inverted pyrrole, which is slightly different from the CNNN ones of 1 and 2 involving an N-confused pyrrole. 1-3 possess cavities with three depronatable protons and thus they all can generate Cu(III) complexes. However, only 3Cu is stable under ambient conditions. On the other hand, 3 remains intact upon treatment with Pd(II) ions, while 1 and 2 could undergo structural rearrangement to accommodate Pd(II), affording 1Pd and 2Pd accompanied by the formation of a lactone ring and the addition of a methoxy group, respectively. Compared with the free bases, the complexes show distinct aromaticity and more intense near-infrared (NIR) absorption up to ca. 1600, 1170, and 1500 nm, respectively. The results indicate that the subtle modification of the linking modes between the pyrrolic units in the fused pentaphyrinoids is effective in modulating the coordination behavior for synthesizing complexes with tunable aromaticity and NIR absorption.

2.
Angew Chem Int Ed Engl ; 62(1): e202212174, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342501

RESUMEN

Sapphyrin is a pentapyrrolic expanded porphyrin with a 22π aromatic character. Herein, we report the synthesis of a 20π antiaromatic sapphyrin isomer 1 by oxidative cyclization of a pentapyrrane precursor P5 with a terminal ß-linked pyrrole. The resulting isomer 1, containing a mis-linked bipyrrole unit in the skeleton, exhibits a reactivity for further oxidation due to the distinct antiaromatic electronic structure, affording a fused macrocycle 2, possessing a spiro-carbon-containing [5.6.5.6]-tetracyclic structure. Subsequent treatment with an acid afforded a weakly aromatic pyrrolone-appended N-confused corrole 3, and thermal fusion gave a [5.6.5.7]-tetracyclic-ring-embedded 14π aromatic triphyrin(2.1.1) analog 4. The cyclization at the mis-linked pyrrole moiety of P5 played a crucial role in synthesizing the antiaromatic porphyrinoid susceptible to facile transformation to novel porphyrinoids with variable aromaticity.


Asunto(s)
Porfirinas , Estructura Molecular , Porfirinas/química , Pirroles/química , Isomerismo
3.
J Org Chem ; 87(5): 2758-2766, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166524

RESUMEN

Sulfolenopyrrole-based normal and N-confused phlorins have been constructed to address the seldom touched phlorin functionalization and simultaneously explore the effect of the pyrrole linkage modes (αα, αß) on the [4 + 2] cycloaddition reaction. The common sulfolenophlorin 1 contains two sulfolenopyrroles with the same reactivity upon tautomerization and undergoes stepwise [4 + 2]-cycloaddition with fullerene to furnish monoadduct 1-C60 and bisadduct 1-2C60 with a total yield up to 76%. By contrast, the presence of the confused pyrrole in 2 fixes the π-system owing to the low tendency to tautomerize and enables the two sulfolenopyrroles to exhibit in different fashions (i.e., normal NH-type and imino-type). Notably, under milder conditions (120 °C), the monofullerenoadduct 2-C60 forms rapidly and has been isolated from the [4 + 2] cycloaddition reaction of 2 and fullerene as the predominant fraction, accompanied by a trace amount of bisadduct 2-2C60. Raising the temperature to 140 °C did not improve the yield of 2-2C60. The structural analysis of 2-C60 indicates the attachment of fullerene at the iminopyrrole part. The high regioselectivity in the [4 + 2] cycloaddition of the imino-type sulfolenopyrrole unit has been rationalized thermodynamically by the DFT calculation on the relative energy of the two diene intermediates.


Asunto(s)
Fulerenos , Reacción de Cicloadición , Fulerenos/química , Pirroles , Temperatura
4.
J Org Chem ; 87(14): 9001-9010, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35748309

RESUMEN

Tandem Diels-Alder reactions of masked porphyrindienes (i.e., sulfolenoporphyrins) with benzoquinones and stilbenes, followed by aromatization, have been developed to load porphyrin with mixed annulation units (i.e., terphenyl and naphthoquinone), furnishing the low-symmetry π-extended porphyrins (DxAy) with push-pull skeletons. All low-symmetrical chromophores display panchromatic absorption spectra, which look like a spectral combination of symmetrical congeners (D4/A4) in a certain ratio. Among them, tD2A2 with trans-arrangement of push/pull units possesses the largest maximum centered at 766 nm with the onset around 900 nm. The fusion of the electron-deficient naphthoquinone moiety on the porphyrin core results in the approximately quantitative regulation of the Eox1 and HOMOs (i.e., 0.10-0.13 V increase for the Eox1 and 0.14-0.16 eV decrease for the HOMOs per naphthoquinone unit). In brief, this work provides a new way to construct low-symmetry π-extended porphyrins with tunable properties resorting to the ratios and locations of the annulated push-pull units.

5.
J Am Chem Soc ; 142(11): 5154-5161, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32088950

RESUMEN

With the purpose to achieve panchromatic absorption for constructing efficient dye-sensitized solar cells (DSSCs), the cosensitization approach of using two dyes with complementary absorption has been developed with great success. However, this approach usually requires time-consuming optimization of a number of parameters for controlling the ratio and distribution of the two coadsorbed dyes on TiO2 film, which limits the potentials of this strategy. We herein report an alternative approach for developing efficient DSSCs by designing a class of "concerted companion dyes" with two complementary dye components linked covalently. Thus, a newly synthesized organic dye Z2 was linked to a recently reported doubly strapped porphyrin dye XW51 through flexible chains with various lengths to afford XW60-XW63. These dyes exhibit excellent absorption and efficiencies in the range of 8.8%-11.7%. Notably, upon coadsorption with chenodeoxycholic acid, XW61 affords an impressive efficiency of 12.4%, a record for iodine electrolyte-based DSSCs, to the best of our knowledge. In addition, these dyes also exhibit the advantages of easy cell fabrication, simple optimization, as well as excellent photostability.

6.
J Am Chem Soc ; 142(40): 17195-17205, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32985886

RESUMEN

Novel interrupted π-conjugated macrocycles derived from expanded porphyrinoids were synthesized, and their unique reactivity was investigated in this work. The specific porphyrin analogs, so-called phlorins and isoporphyrins, possess a meso-sp3 methylene moiety, showing inner 3NH and 1NH pyrrolic cores, respectively, and extended near-infrared (NIR) absorption. Expanded N-confused pentapyrrolic phlorin analog 1 bears an interrupted cyclic π-conjugated system that is featured by a distinct higher HOMO and a lower LUMO. Oxidation of 1 allowed structural transformations through the expanded isoporphyrin-like species 2. One of the representative products is a spiro-carbon-bridged multiply N-fused product 3 comprising a fused [5.6.5.7.6.5]-hexacyclic ring obtained by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone. When magic blue was used as the oxidant, an aromatic N-confused pentaphyrin 4 was obtained via migration of one of the meso-phenyl groups to the ß-position of the neighboring pyrrolic ring. By employing the flexible cavity of 1 for metal coordination, Pd(II) complexation occurred with a specific meso oxygenation to give a bimetallic complex 5. In contrast to the rich oxidation reactions, reduction of 1 with NaBH4 resulted in the regioselective nucleophilic hydrogen substitution reaction at the para position of one of the meso-C6F5 groups. These results provide a practical approach for synthesizing novel interrupted or aromatic π-conjugated frameworks showing NIR absorptions.

7.
Angew Chem Int Ed Engl ; 59(4): 1537-1541, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31709678

RESUMEN

An N-confused phlorin isomer bearing a dipyrrin moiety at the α-position of the confused pyrrole ring (1) was synthesized. PdII and BIII coordination at the peripheral prodigiosin-like moiety of 1 afforded the corresponding complexes 2 and 3. Reflux of 2 in triethylamine (TEA) converted the meso-phenyl into the PdII -coordinating phenoxy group to afford 4. Under the same reaction conditions, TEA was linked to the α-position of the dipyrrin unit in 3 as an N,N-diethylaminovinyl group to afford 5. Furthermore, peripheral coordination of BIII in 3 and 5 improved the planarity of the phlorin macrocycle and thus facilitated the coordination of AgIII at the inner cavity to afford 3-Ag and 5-Ag, respectively. These results provide an effective approach for developing unique porphyrinoids through peripheral coordination.

8.
J Am Chem Soc ; 141(13): 5294-5302, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30849868

RESUMEN

Expanded porphyrins have been attracting increasing attention owing to their unique optical and electrochemical properties as well as switchable aromaticity. Toward material applications, regioselective functionalization of the expanded porphyrins at their periphery is indeed challenging due to the presence of multiple reactive sites. Herein, a set of regioselective halogenated isomers (L5-Br-A/B/C) of neo-confused isosmaragdyrin (L5) are synthesized by a combination of the halogenation reaction of L5 and sequential macrocycle-to-macrocycle transformation reactions of its halogenated isomers. On this basis, the regioselectively functionalized isosmaragdyrins are utilized as building blocks for constructing multichromophoric porphyrinoids, specifically, heterodyads L5-ZnP-A/B/C, in which a common zinc porphyrin is linked at three different pyrrolic positions of isosmaragdyrins, respectively, by Sonogashira coupling reactions. The highly efficient energy cascade from porphyrin to isosmaragdyrin is elucidated using steady-state/time-resolved spectroscopies and theoretical calculations. Notably, the energy transfer processes from the porphyrin to the isosmaragdyrin moieties as well as the excitation energy transfer rates in L5-ZnP-A/B/C are highly dependent on the linking sites by through-bond and Förster-type resonance energy transfer mechanisms. The site-selective functionalization and subsequent construction of a set of heterodyads of the expanded porphyrinoid would provide opportunities for developing new materials for optoelectronic applications.

9.
Chem Rev ; 117(4): 2203-2256, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-27078087

RESUMEN

Sensing of metal ions and anions is of great importance because of their widespread distribution in environmental systems and biological processes. Colorimetric and fluorescent chemosensors based on organic molecular species have been demonstrated to be effective for the detection of various ions and possess the significant advantages of low cost, high sensitivity, and convenient implementation. Of the available classes of organic molecules, porphyrin analogues possess inherently many advantageous features, making them suitable for the design of ion chemosensors, with the targeted sensing behavior achieved and easily modulated based on their following characteristics: (1) NH moieties properly disposed for binding of anions through cooperative hydrogen-bonding interactions; (2) multiple pyrrolic N atoms or other heteroatoms for selectively chelating metal ions; (3) variability of macrocycle size and peripheral substitution for modulation of ion selectivity and sensitivity; and (4) tunable near-infrared emission and good biocompatibility. In this Review, design strategies, sensing mechanisms, and sensing performance of ion chemosensors based on porphyrin analogues are described by use of extensive examples. Ion chemosensors based on normal porphyrins and linear oligopyrroles are also briefly described. This Review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing high-performance ion chemosensors based on porphyrin analogues and other relevant compounds.


Asunto(s)
Porfirinas/química , Cationes/análisis , Colorimetría , Colorantes Fluorescentes/química , Estructura Molecular , Pirroles/química
10.
Phys Chem Chem Phys ; 21(45): 25334-25343, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701970

RESUMEN

The recently synthesized twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives have been studied computationally. Gauge-including magnetically induced current calculations predict a global nonaromatic character of the initial thia-norhexaphyrin due to the highly-twisted conformation of the macrocycle. Upon the oxidation of the thia-norhexaphyrin four multiply annulated polypyrrolic aromatic macrocycles are formed for which the global aromatic character is confirmed in agreement with experimentally measured 1H NMR spectra. The calculation of the proton chemical shifts for the studied compounds by direct comparison with the tetramethylsilane standard leads to a significant mean absolute error. At the same time a linear regression procedure for the two selected groups of protons (CH and NH protons) provides much better values of calculated chemical shifts and tight correlation with experiment. The separate consideration of NH protons is motivated by the numerous intermolecular hydrogen bonds in which the protons are involved, which induce considerable upfield shifts, leading to a significant underestimation of the corresponding chemical shifts. Such a selected correlation can be used for accurate estimation of proton chemical shifts of the related porphyrinoids. Bader's theory of Atoms in Molecules has been applied for the studied twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives to characterize intramolecular H-bonds and other non-covalent interactions.

11.
Angew Chem Int Ed Engl ; 58(18): 5925-5929, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30843636

RESUMEN

A hybrid thia-norhexaphyrin comprising a directly linked N-confused pyrrole and thiophene unit (1) revealed unique macrocycle transformations to afford multiply inner-annulated aromatic macrocycles. Oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone triggered a cleavage of the C-S bond of the thiophene unit, accompanied with skeletal rearrangement to afford unique π-conjugated products: a thiopyrrolo-pentaphyrin embedded with a pyrrolo[1,2]isothiazole (2), a sulfur-free pentaphyrin incorporating an indolizine moiety (3), and a thiopyranyltriphyrinoid containing a 2H-thiopyran unit (4). Furthermore, 2 underwent desulfurization reactions to afford a fused pentaphyrin containing a pyrrolizine moiety (5) under mild conditions. Using expanded porphyrin scaffolds, oxidative thiophene cleavage and desulfurization of the hitherto unknown N-confused core-modified macrocycles would be a practical approach for developing unique polypyrrolic aromatic macrocycles.

12.
Chem Soc Rev ; 44(5): 1101-12, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25608833

RESUMEN

Metal ions and anions play important roles in many industrial and biochemical processes, and thus it is highly desired to detect them in the relevant systems. Small organic molecule based sensors for selective and sensitive detection of target ions show the advantages of low cost, high sensitivity and convenient implementation. In this area, pyrrole has incomparable advantages. It can be easily incorporated into linear and macrocyclic conjugated structures such as dipyrrins, porphyrins, and N-confused porphyrins, which may utilize the imino N and amino NH moieties for binding metal ions and anions, respectively. In this tutorial review, we focus on representative examples to describe the design, syntheses, sensing mechanisms, and applications of the conjugated oligopyrroles. These compounds could be used as colorimetric or fluorescent ion probes, with the advantages of vivid colour and fluorescence changes, easy structural modification and functionalization, and tunable emission wavelengths. Compared with normal porphyrins, simple di- and tripyrrins, as well as some porphyrinoids are more suitable for designing fluorescence "turn-on" metal probes, because they may exhibit flexible confirmations, and metal coordination will improve the rigidity, resulting in vivid fluorescence enhancement. It is noteworthy that the oligopyrrolic moieties may simultaneously act as the binding unit as well as the reporting moiety, which simplifies the design and syntheses of the probes.


Asunto(s)
Colorantes Fluorescentes/química , Pirroles/química , Colorimetría/métodos , Metales , Estructura Molecular
13.
Angew Chem Int Ed Engl ; 55(9): 3063-7, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26822959

RESUMEN

Three kinds of fused porphyrinoids, L2-L4, possessing different types of corrole-based frameworks were synthesized from a pyrrole-substituted corrole isomer (norrole L1). Oxidation of L1 afforded a unique N-Cmeso -fused pyrrolyl isonorrole L2, involving the fusion of an auxiliary pyrrolic NH moiety with a meso-sp(3) -hybridized carbon atom. Subsequently, L2 underwent macrocycle transformations to give singly and doubly N-CAr -fused N-confused corroles, L3 and L4, respectively. L3 and L4 contain fused [5.7.6.5]-tetra- and [5.6.7.7.6.5]-hexacyclic structures, respectively, prepared through lateral annulation. These skeletal transformation reactions from norrole to its isomer isonorrole and finally to N-confused corrole indicate that multiply fused porphyrinoids could be readily synthesized from pyrrole-appended confused porphyrinoids.

14.
J Am Chem Soc ; 137(44): 14055-8, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26492075

RESUMEN

Dye-sensitized solar cells (DSSCs) are promising for utilizing solar energy. To achieve high efficiencies, it is vital to synergistically improve the photocurrent (Jsc) and the photovoltage (Voc). In this respect, conjugation framework extension and cosensitization are effective for improving the absorption and the Jsc, which, however, is usually accompanied by undesirably decreased Voc. Herein, based on a rationally optimized porphyrin dye, we develop a targeted coadsorption/cosensitization approach for systematically improving the Voc from 645 to 727, 746, and 760 mV, with synergistical Jsc enhancement from 18.83 to 20.33 mA cm(-2). Thus, the efficiency has been dramatically enhanced to 11.5%, which keeps the record for nonruthenium DSSCs using the I2/I3(-) electrolyte. These results compose an alternative approach for developing highly efficient DSSCs with relatively high Voc using traditional iodine electrolyte.

15.
Small ; 11(19): 2284-90, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25641852

RESUMEN

Rational control of molecular ordering on surfaces and interfaces is vital in supramolecular chemistry and nanoscience. Here, a systematic scanning tunneling microscopy (STM) study for controlling the self-assembly behavior of alkoxylated benzene (B-OC(n)) molecules on a HOPG surface is presented. Three different phases have been observed and, of great importance, they can transform to each other by modifying the solute concentration. Further studies, particularly in situ diluting and concentrating experiments, demonstrate that the transitions among the three phases are highly controllable and reversible, and are driven thermodynamically. In addition, it is found that concentration-controlled reversible phase transitions are general for different chain lengths of B-OC(n) molecules. Such controllable and reversible phase transitions may have potential applications in the building of desirable functional organic thin films and provide a new understanding in thermodynamically driven self-assembly of organic molecules on surfaces and interfaces.

16.
Angew Chem Int Ed Engl ; 54(25): 7275-80, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25950152

RESUMEN

The rational design of high-performance fluorescent materials for cancer targeting in vivo is still challenging. A unique molecular design strategy is presented that involves tailoring aggregation-induced emission (AIE)-active organic molecules to realize preferable far-red and NIR fluorescence, well-controlled morphology (from rod-like to spherical), and also tumor-targeted bioimaging. The shape-tailored organic quinoline-malononitrile (QM) nanoprobes are biocompatible and highly desirable for cell-tracking applications. Impressively, the spherical shape of QM-5 nanoaggregates exhibits excellent tumor-targeted bioimaging performance after intravenously injection into mice, but not the rod-like aggregates of QM-2.


Asunto(s)
Colorantes Fluorescentes/química , Nanoestructuras/química , Neoplasias/diagnóstico , Nitrilos/química , Quinolinas/química , Animales , Colorantes Fluorescentes/farmacocinética , Rayos Infrarrojos , Ratones , Modelos Moleculares , Nanoestructuras/análisis , Nanoestructuras/ultraestructura , Nitrilos/farmacocinética , Imagen Óptica , Quinolinas/farmacocinética , Imagen de Cuerpo Entero
17.
Chemistry ; 20(40): 12910-6, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25124508

RESUMEN

Compared with most of the reported logic devices based on the supramolecular approach, systems based on individual molecules can avoid challenging construction requirements. Herein, a novel dioxoporphyrin DPH22 was synthesized and two of its tautomers were characterized by single-crystal X-ray diffraction studies. Compound DPH22 exhibits multichannel controllable stepwise tautomerization, protonation, and deprotonation processes through interactions with H(+) and F(-) ions. By using the addition of H(+) and F(-) ions as inputs and UV/Vis absorption values at λ=412, 510, 562, and 603 nm as outputs, the controlled tautomerism of DPH22 has been successfully used for the construction of an integrated molecular level half-subtractor and comparator. In addition, this acid/base-switched tautomerism is reversible, thus endowing the system with ease of reset and recycling; consequently, there is no need to modulate complicated intermolecular interactions and electron-/charge-transfer processes.

18.
Angew Chem Int Ed Engl ; 53(18): 4603-7, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24668917

RESUMEN

Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT).

19.
Angew Chem Int Ed Engl ; 53(8): 2090-4, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24442799

RESUMEN

Using one ray of light to encode another ray of light is highly desirable because information in optical format can be directly transferred from one beam to another without converting back to the electronic format. One key medium to accomplish such an amazing task is photoswitchable molecules. Using bis(dithiazole)ethene that can be photoswitched between its ring-open and ring-closed states quantitatively with excellent fatigue resistance and high thermal stability, it is shown that quantitative photoreversibility allowed the photoswitching light to control other light travelling through the photoswitchable medium, a phenomenon of transferring information encoded in one light ray to others, thus imparting photo-optical modulation on the orthogonal light beam.


Asunto(s)
Etilenos/química , Tiazoles/química , Cristalografía por Rayos X , Ciclización , Luz , Conformación Molecular , Temperatura
20.
Angew Chem Int Ed Engl ; 53(40): 10779-83, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25132108

RESUMEN

Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open-circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45%. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye-sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda