Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116210, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479311

RESUMEN

Thiosulfate influences the bioreduction and migration transformation of arsenic (As) and iron (Fe) in groundwater environments. The aim of this study was to investigate the impact of microbially-mediated sulfur cycling on the bioreduction and interaction of As and Fe. Microcosm experiments were conducted, including bioreduction of thiosulfate, As(V), and Fe(III) by Citrobacter sp. JH012-1, as well as the influence of thiosulfate input at different initial arsenate concentrations on the bioreduction of As(V) and Fe(III). The results demonstrate that Citrobacter sp. JH012-1 exhibited strong reduction capabilities for thiosulfate, As(V), and Fe(III). Improving thiosulfate level promoted the bioreduction of Fe(III) and As(V). When 0, 0.1, 0.5, and 1 mM thiosulfate were added, Fe(III) was completely reduced within 9 days, 3 days, 1 day, and 0.5 days, simultaneously, 72.8%, 82.2%, 85.5%, and 90.0% of As(V) were reduced, respectively. The products of As(III) binding with sulfide are controlled by the ratio of As-S. When the initial arsenate concentration was 0.025 mM, the addition of thiosulfate resulted in the accumulation of soluble thioarsenite. However, when the initial arsenate level increased to 1 mM, precipitates of orpiment or realgar were formed. In the presence of both arsenic and iron, As(V) significantly inhibits the bioreduction of Fe(III). Under the concentrations of 0, 0.025, and 1 mM As(V), the reduction rates of Fe(III) were 100%, 91%, and 83%, respectively. In this scenario, the sulfide produced by thiosulfate reduction tends to bind with Fe(II) rather than As(III). Therefore, the competition of arsenic-iron and thiosulfate concentration should be considered to study the impact of thiosulfate on arsenic and iron migration and transformation in groundwater.


Asunto(s)
Arsénico , Agua Subterránea , Hierro/análisis , Arsénico/metabolismo , Arseniatos , Tiosulfatos , Oxidación-Reducción , Sulfuros , Compuestos Férricos/metabolismo
2.
J Environ Manage ; 353: 120168, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38278111

RESUMEN

Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Manganeso/análisis , Arsénico/química , Compuestos Férricos/química , Minerales/química , Agua Subterránea/química , Bacterias , Compuestos Ferrosos , Oxidación-Reducción , Contaminantes Químicos del Agua/química
3.
J Environ Sci (China) ; 146: 81-90, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969464

RESUMEN

Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.


Asunto(s)
Arsénico , Carpas , Eutrofización , Microcystis , Contaminantes Químicos del Agua , Microcystis/metabolismo , Animales , Carpas/metabolismo , Arsénico/metabolismo , Arsénico/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
J Environ Manage ; 345: 118858, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647731

RESUMEN

Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.


Asunto(s)
Arsénico , Bacillus , Chlorella , Microalgas , Suelo , Sustancias Húmicas , Triptófano
5.
Ecotoxicol Environ Saf ; 208: 111478, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091775

RESUMEN

Metal-reducing bacteria play an important role in the release and mobilization of arsenic from sediments into groundwater. This study aimed to investigate the influence of nitrate on arsenic bio-release. Microcosm experiments consisting of high arsenic sediments and indigenous bacterium Bacillus sp. D2201 were conducted and the effects of nitrate on the mobilization of As/Fe determined. The results show arsenic release is triggered by iron reduction, which is regulated by nitrate. Increasing the nitrate concentration from 0 to 1 and 3 mM decreased Fe(III) reduction by 62.5% and 16.9% and decreased As(V) bio-release by 41.5% and 85.5%, respectively. Moreover, the results of step-wise Wenzel sequential extractions indicate nitrate addition prevents the transformation of poorly crystalline iron oxides to well crystalline iron oxides. Overall, nitrate appears to have a dual effect, inhibiting both iron reduction and arsenic release by incubation strain D2201. This study offers new insights regarding the biogeochemistry of arsenic in groundwater systems.


Asunto(s)
Arsénico/metabolismo , Bacterias/metabolismo , Hierro/metabolismo , Nitratos/metabolismo , Biodegradación Ambiental , Compuestos Férricos/metabolismo , Sedimentos Geológicos/química , Agua Subterránea/química , Hierro/química , Nitratos/análisis , Oxidación-Reducción
6.
Int J Phytoremediation ; 22(11): 1147-1155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189511

RESUMEN

Arsenic (As) pollution of fresh water has become a major concern worldwide. The present study reports the As accumulation potential and detoxification mechanism in a native plant, Vallisneria denseserrulata (Makino), under different aquatic acidity conditions (pH). V. denseserrulata showed maximum growth at pH ∼7.0 and accumulated ∼1700 mg/kg of As. The increase in pH from 3.5 to 7 significantly (p ≤ 0.05) increased As accumulation, thiol and total protein contents while malondialdehyde (MDA) content, soluble sugar content and percentage electrolytic leakage (%EL) of V. denseserrulata were decreased. The reduction of arsenate [As(V)] to arsenite As(III) was observed as a key step (81% reduction) of the As detoxification in V. denseserrulata. Majority of accumulated As was found in vacuoles (56-72%), while >80% of As in vacuoles was in the form of As(III). FT-IR spectra indicated the complexsation of As with carboxyl, amide, thiol, and hydroxyl groups. Our findings showed the presence of As detoxification mechanism in V. denseserrulata. Vacuolar As compartmentalization and formation of As-Phytochelatins/thiol complexes can be a part of As detoxification mechanisms in V. denseserrulata.


Asunto(s)
Arsénico/análisis , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Vacuolas/química
7.
Ecotoxicology ; 23(10): 1922-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25142350

RESUMEN

Species differences in inorganic arsenic tolerance were investigated by comparing the responses of Bacillus subtilis (B. subtilis) and Bacillus thuringiensis (B. thuringiensis) to elevated concentrations of As(III) and As(V). The cell densities in treatments were always lower during the experiment compared to controls, with the exception of exposure to 1.0 mg As(V) l(-1) on the first day. It was also found that relative growth rate (RGR) of B. thuringiensis was lower than that of B. subtilis. Furthermore, RGR of each Bacillus species was negative correlation with toxicity of inorganic arsenic. However, total cell number still increased in each treatment according to cell density and RGR assays. Superoxide dismutase (SOD) activity of both Bacillus species was promoted by As(III) and As(V), especially under high arsenic concentration condition. In addition, SOD activity of B. thuringiensis was higher than that of B. subtilis during the same exposure time. In lipid peroxidation assay, thiobarbituric acid-reactive substances (TBARS) content of each Bacillus species had a significant increase with increment of arsenic concentration. Moreover, significant difference was observed between the two Bacillus species under high arsenic concentration. TBARS content of B. thuringiensis was higher than that of B. subtilis, indicating that effect of arsenic on cell membranes of B. thuringiensis was much more than that of B. subtilis. These results suggest that the two Bacillus species could adapt and live in high arsenic aquifers, although their growth and cell membranes were affected by As treatment in a way.


Asunto(s)
Arsénico/metabolismo , Bacillus/fisiología , Sustancias Peligrosas/metabolismo , Superóxido Dismutasa/metabolismo , Biodegradación Ambiental , Peroxidación de Lípido , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
8.
Aquat Toxicol ; 266: 106804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141498

RESUMEN

Among the various pollutants detected in aquatic ecosystems, cadmium (Cd) is considered as one of the most hazardous. Freshwater macrophytes have been recognized as possible candidates for eliminating Cd from environment. Nevertheless, the impact of light quality on their ability to tolerate Cd toxicity remains unclear, and the underlying mechanisms have yet to be fully elucidated. In this study, we utilized physiological testing and metabolomics to explore the potential mechanisms by which light quality influences the ability of Egeria densa, a significant Cd hyperaccumulator, to withstand Cd toxicity. The study demonstrated that following Cd treatment, E. densa grown under red light exhibited superior photosynthetic efficiency compared to those grown under blue light, as evidenced by significantly increased photosynthetic rate, higher starch content, and greater activity of photosynthetic enzymes. Moreover, metabolomic analyses revealed that under Cd stress, E. densa grown under red light exhibited an enhanced glycolysis for increased energy production. Sucrose metabolism was also improved to generate sufficient sugar including glucose, fructose and mannose for osmotic adjustment. Moreover, under red light, the heightened production of α-ketoglutarate via tricarboxylic acid (TCA) cycle redirected nitrogen flow towards the synthesis of resilient substances such as γ-Aminobutyric Acid (GABA) and methionine. The production of these substances was ∼2.0 and 1.3 times greater than that of treatment with Cd under blue light, thereby improving E. densa's capacity to withstand Cd stress. This study represents the initial investigation into the possible mechanisms by which light quality influences the ability of E. densa to withstand Cd toxicity through regulating CN metabolism. Furthermore, these findings have the potential to improve phytoremediation strategies aimed at reducing Cd pollution.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/toxicidad , Ecosistema , Luz Roja , Carbono , Contaminantes Químicos del Agua/toxicidad , Metabolismo Energético , Nitrógeno
9.
Plant Physiol Biochem ; 211: 108675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705047

RESUMEN

Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R-grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.


Asunto(s)
Antioxidantes , Cadmio , Luz , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/metabolismo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de los fármacos , Hydrocharitaceae/efectos de la radiación , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ciclopentanos/metabolismo , Fotosíntesis/efectos de los fármacos , Glutatión/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz Roja
10.
Environ Pollut ; 341: 123001, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000723

RESUMEN

Microorganisms are of great significance for arsenic (As) toxicity amelioration in plants as soil fertility is directly affected by microbes. In this study, we innovatively explored the effects of indigenous cyanobacteria (Leptolyngbya sp. XZMQ) and plant growth-promoting bacteria (PGPB) (Bacillus XZM) on the growth and As absorption of sunflower plants from As-contaminated soil. Results showed that single inoculation and co-inoculation stimulated the growth of sunflower plants (Helianthus annuus L.), enhanced enzyme activities, and reduced As contents. In comparison to the control group, single innoculation of microalgae and bacteria in the rhizosphere increased extracellular polymeric substances (EPS) by 21.99% and 14.36%, respectively, whereas co-inoculation increased them by 35%. Compared with the non-inoculated group, As concentration in the roots, stems and leaves of sunflower plants decreased by 38%, 70% and 41%, respectively, under co-inoculation conditions. Inoculation of Leptolyngbya sp. XZMQ significantly increased the abundance of nifH in soil, while co-inoculation of cyanobacteria and Bacillus XZM significantly increased the abundance of cbbL, indicating that the coupling of Leptolyngbya sp. XZMQ and Bacillus XZM could stimulate the activity of nitrogen-fixing and carbon-fixing microorganisms and increased soil fertility. Moreover, this co-inoculation increased the enzyme activities (catalase, sucrase, urease) in the rhizosphere soil of sunflower and reduced the toxic effect of As on plant. Among these, the activities of catalase, peroxidase, and superoxide dismutase decreased. Meanwhile, co-inoculation enables cyanobacteria and bacteria to attach and entangle in the root area of the plant and develop as symbiotic association, which reduced As toxicity. Co-inoculation increased the abundance of aioA, arrA, arsC, and arsM genes in soil, especially the abundance of microorganisms with aioA and arsM, which reduced the mobility and bioavailability of As in soil, hence, reduced the absorption of As by plants. This study provides a theoretical basis for soil microbial remediation in mining areas.


Asunto(s)
Arsénico , Bacillus , Cianobacterias , Helianthus , Contaminantes del Suelo , Catalasa , Arsénico/toxicidad , Rizosfera , Raíces de Plantas/química , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
11.
Environ Pollut ; 346: 123597, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369096

RESUMEN

Coconut shell activated carbon (CNSAC) was applied as a filter layer in hybrid vertical subsurface flow constructed wetland (H-VSSF-CW), in order to enhance the multi-metal removal efficiency of the constructed wetland (CW) and to reduce heavy metal accumulation on Salvinia cucullata. Treatment P + AC, (having CNSAC filter layer), showed 32, 21 and 34% more Cd, Cr, and Pb removal efficiency than treatment P (without CNSAC layer). CNSAC activated carbon adsorbed Cd and Pb and Cr by functional groups -NH, -NO2, -C-O, -OH and -CO, and significantly reduced Cd and Pb exposure to S. cucullate. Chromium adsorption by CNSAC filter layer was half (just 25% of total input) of the Cd and Pb. In treatment P, due to high Cd, Pb and Cr accumulation in S. cucullate, the antioxidant defense mechanism of the plant was collapsed and cell death was observed, which in turn has resulted reduced biomass gain (5% reduction). On the other hand, in treatment P + AC, an antioxidant defense mechanism was active in the form significantly (p ≤ 0.05) increased of SOD, CAT and proline content while reduced MDA, EL, %EB and soluble sugar. So, the application of CNSAC increased the heavy metal removal efficiency of H-VSSF-CW by adsorption of a considerable share of heavy metal and hence, reduced the heavy metal load/exposure to S. cucullate.


Asunto(s)
Metales Pesados , Tracheophyta , Cadmio/análisis , Humedales , Cocos/metabolismo , Antioxidantes , Carbón Orgánico , Biodegradación Ambiental , Plomo , Eliminación de Residuos Líquidos/métodos , Metales Pesados/análisis
12.
Sci Total Environ ; 929: 172609, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663623

RESUMEN

Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.


Asunto(s)
Carbono , Cianobacterias , Microbiota , Oryza , Microbiología del Suelo , Suelo , Carbono/metabolismo , Cianobacterias/metabolismo , China , Suelo/química , Fertilizantes , Fijación del Nitrógeno , Nitrógeno/metabolismo , Agricultura/métodos
13.
Sci Total Environ ; 921: 171081, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387583

RESUMEN

The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.


Asunto(s)
Metano , Nitritos , Anaerobiosis , Bacterias Anaerobias , Oxidación-Reducción , Reactores Biológicos , Carbono , Desnitrificación
14.
Chemosphere ; 311(Pt 1): 136956, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280119

RESUMEN

Reductive dissolution of scorodite results in the release and migration of arsenic (As) in groundwater. The purpose of this study was to explore the possible abiotic and biotic reduction of scorodite in groundwater environment and the effect of microbial-mediated sulfur cycling on the bio-reduction of scorodite. Microcosm experiments consisting of scorodite with bacterium Citrobacter sp. JH012-1 or free sulfide were carried out to determine the effects of thiosulfate on the mobilization of As/Fe. The results show arsenic release is positively correlated with iron reduction. The arsenate [As(V)] released can agglomerate with Fe(II) on the surface of scorodite to form crystalline parasymplesite, while no parasymplesite was detected in the abiotic reduction of scorodite by sulfide. The reduction of scorodite and As(V) was affected by thiosulfate. When 0.5 mM thiosulfate was added, the Fe(III) reduction rate increased from 32% to 82%, and the As(V) reduction rate rose from 54% to 64%. When the addition of thiosulfate was increased from 0.5 mM to 2 mM and 5 mM, Fe(III) reduction rate added 4% and 8%, and As(V) reduction rate increased 11% and 16%, respectively. In addition, the presence of thiosulfate promoted the scorodite almost completely converting to parasymplesite. Therefore, the effect of microbial-mediated sulfur cycling should be considered in arsenic migration and reduction from scorodite.


Asunto(s)
Arsénico , Agua Subterránea , Arsénico/química , Tiosulfatos/metabolismo , Compuestos Férricos/química , Oxidación-Reducción , Agua Subterránea/química , Bacterias/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo
15.
Environ Sci Pollut Res Int ; 30(16): 46657-46668, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36725797

RESUMEN

Substitution of aluminum under natural environmental conditions has been proven to inhibit the transformation of weakly crystalline iron (oxyhydr)-oxides towards well crystalline iron oxides, thereby enhancing their long-term stability. However, exploration on the role of aluminum substitution in bacteria-mediated iron oxides transformation is relatively lacking, especially in the anaerobic underground condition where iron (oxyhydr)-oxides are easy to reduced. In this study, we selected four different levels of substitution aluminum prevalent in iron oxides under natural conditions, which are 0 mol%, 10 mol%, 20 mol%, and 30 mol% (mol Al/mol (Al + Fe)) respectively. With the presence of Shewanella oneidensis MR-1, we conducted a 15-day anaerobic microcosm experiment in simulated groundwater conditions. The experiment data suggested that aluminum substitution result in a decrease in bio-reduction rate constants of ferrihydrite from 0.24 in 0 mol% Al to 0.17 in 30 mol% Al. Besides, when containing substituted aluminum, secondary minerals produced by biological reduction of ferrihydrite changed from magnetite to akaganeite. These results were attributed to the surface coverage of Al during the reduction process, which affects the contact between S. oneidensis MR-1 and the unexposed Fe(III), thus inhibiting the further reduction of ferrihydrite. Since iron (oxyhydr)-oxides exhibit a strong affinity on multiple kinds of pollutants, results in this study may contribute to predicting the migration and preservation of contaminants in groundwater systems.


Asunto(s)
Compuestos Férricos , Shewanella , Compuestos Férricos/química , Aluminio , Oxidación-Reducción , Hierro/química , Óxidos
16.
Plants (Basel) ; 12(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514281

RESUMEN

Cadmium (Cd) is highly toxic and widely distributed in aquatic systems due to its high solubility and mobility in water, which can severely inhibit the survival of aquatic macrophytes. The phytotoxicity of Cd depends on environmental factors; however, it remains unclear whether and how light quality affects its toxicity on aquatic macrophytes. In this study, we investigated the effects of Cd on aquatic macrophytes Potamogeton crispus under different light qualities (white, blue, and red light). We evaluated morphological and photo-physiological traits, as well as the cellular antioxidant defense system. Our findings indicate that P. crispus under Cd stress showed notable damage in leaf morphology, decreased photosynthetic efficiency, inhibited HCO3- uptake, and reduced antioxidant enzyme activities, as well as oxidative damage indicated by MDA accumulation and superoxide (O2-) overproduction. However, compared with white or red light under Cd stress, blue light reduced structural damage and oxidative stress caused by Cd while increasing pigment synthesis and photosynthetic efficiency, as well as increasing ascorbate peroxidase (APX) activity. In conclusion, the changes induced by blue light in P. crispus's photosynthesis and antioxidant system strengthen its tolerance to Cd. Further research on signal transmission in relation to light quality in Cd-exposed aquatic plants is still needed.

17.
Sci Total Environ ; 860: 160543, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36455732

RESUMEN

Biocrust was widely used for the immobilization and removal of arsenic (As) in drainage systems of rice fields and mining areas. In this study, the role of an indigenous cyanobacteria (Leptolyngbya sp. XZMQ) was explored in the bioremediation of As-contaminated farmland and tailing soil. After 80 d of inoculation with cyanobacteria, total As (As(T)) accumulated in the cyanobacterial crust of farmland and tailing soil was 279.89 mg kg-1 and 269.57 mg kg-1, respectively, and non-EDTA exchangeable fraction was the major fraction of it. The As(T) in farmland and tailing soil of micro-environment decreased by 10.76% and 12.73%, respectively. Meanwhile, the available As (As(a)) decreased by 21.25% and 27.65%, respectively. The XRD results showed that hematite and SiO2 existed in cyanobacterial crust of farmland and tailing soil. FTIR spectra indicated that the adsorption of As in cyanobacterial crust was mediated by OH and CO. After inoculation of Leptolyngbya sp. XZMQ, in subcrust soil, As biotransformation gene aioA was the most abundant, followed by arsM. The dominant phyla of soil biota were Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroiota, which could play critical roles in shaping aioA and arsM harboring microbe communities in soil. Redundancy analysis (RDA) showed that soil organic carbon (OC), pH, and chlorophyll a (Chl a) were the most important environmental factors in altering soil bacterial communities. Correlation analysis showed the Leptolyngbya had a positive correlation with Chl a, effective nitrogen (N(a)), electrical conductivity (EC), OC, pH in the soil, respectively, while it had a significant negative correlation with As(a), As(III) and As(T). These results emphasized on the significance of cyanobacteria in the behavior of As in mine soils and offered a promising strategy for bioremediation of As-contaminated soil in the mining area.


Asunto(s)
Arsénico , Cianobacterias , Microbiota , Contaminantes del Suelo , Arsénico/análisis , Suelo/química , Carbono , Clorofila A/análisis , Dióxido de Silicio , Cianobacterias/metabolismo , Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo/análisis
18.
Sci Total Environ ; 858(Pt 2): 159884, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334665

RESUMEN

Iron (Fe)-manganese (Mn) minerals formed in situ can be used for the natural remediation of the primary poor-quality groundwater with coexistence of arsenite [As(III)], Mn(II), and Fe(II) (PGAMF). However, the underlying mechanisms of immobilization and coupling of As, Mn, and Fe during in-situ formation of Fe-Mn minerals in PGAMF remains unclear. The simultaneous immobilization and coupling of arsenic (As), Mn, and Fe in PGAMF during in-situ formation of biogenic Fe-Mn minerals induced by O2 perturbations and indigenous bacteria (Comamonas sp. RM6) were investigated at the different molar ratios of Fe(II):Mn(II) (1:1, 2:1, and 3:1). Compared with systems without Fe(II) in the presence of Mn(II), the coexisted Fe(II) significantly enhanced Mn(II) bio-oxidation and mineral precipitation, resulting in As immobilization increased by 5, 7, and 7 times at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM, respectively. Moreover, the As(III) immobilization efficiencies in Mn(II) and Fe(II) mixed system at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM were 73%, 91%, and 92%, respectively, that were significantly higher than those of single Fe(II) system (30%, 59%, and 74%) and those of single Mn(II) system (12%), indicating that Fe(II) and Mn(II) oxidation synergically enhanced As(III) immobilization. This was mainly attributed to the formation and As adsorption capacity of biogenic Fe-Mn minerals (BFMM). The formed BFMM significantly facilitated simultaneous immobilization of Fe, Mn, and As in PGAMF by oxidation, adsorption, and precipitation/coprecipitation, a coupling of biological, physical, and chemical processes. Fe component was mainly responsible for As fixation, and Mn component dominated As(III) oxidation. Based on the results from this work, biostimulation and bioaugmentation techniques can be developed for in-situ purification and remediation of PGAMF. This work provides insights into the simultaneous immobilization of pollutants in PGAMF, as well as promising strategies for in-situ purification and remediation of PGAMF.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Manganeso , Oxígeno , Hierro , Minerales , Bacterias , Oxidación-Reducción , Compuestos Ferrosos
19.
Environ Sci Pollut Res Int ; 30(6): 14932-14942, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36161588

RESUMEN

Organophosphorus flame retardants (OPFRs) are widely used in various industrial manufacturing processes; thus, their environmental impact in agglomerated industrial areas is of great concern. In this study, seventeen kinds of OPFRs and five kinds of organophosphate diesters (Di-OPs) in water and upper sediment samples from two urban rivers in the agglomerated industrial area of Shenzhen city, China, were investigated. The results showed that the total concentrations of detectable OPFRs ranged from 3438.83 to 12,838.87 ng/L with an average of 6494.94 ng/L in water samples and from 47.16 to 524.46 ng/g (dry weight, dw) with an average of 181.48 ng/g dw in sediment. The values were higher than those in other rivers worldwide. Tris(2-chloroethyl) phosphate (TCEP) is the predominant OPFRs in water and upper sediment, up to 10,664.23 ng/L in water and 414.12 ng/g dw in sediment. The total concentration of OPFRs of sediment samples in the Maozhou River was around twice as high as in the Guanlan River. The results indicated that the level of OPFRs was associated with the industrial activity intensity. Di-OPs exhibited lower concentrations than their parent compounds, and can be attributed to the degradation/metabolism of their parent compounds in the river. The sediment-water partition of OPFRs is significantly correlated with their log Kow values. Risk assessment revealed moderate ecological risks posed by OPFRs in water to aquatic organisms. The present study revealed the pollution status of OPFRs in rivers from agglomerated industrial and residential areas.


Asunto(s)
Retardadores de Llama , Agua , Compuestos Organofosforados , Retardadores de Llama/análisis , Ríos , Organofosfatos , Monitoreo del Ambiente/métodos , China
20.
Environ Sci Pollut Res Int ; 30(21): 60607-60617, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37036649

RESUMEN

We used magnesium slag (MS) as a calcium source for modifying coal gasification coarse slag (CGCS) in the presence of NaOH to prepare a novel phosphate adsorbent (MS-CGCS). Ca2SiO4 in MS reacts with NaOH during the high-temperature synthesis process, with sodium displacing a part of the calcium content in Ca2SiO4 and entering the mineral lattice to form Na2CaSiO4. Hydroxide ions reacted with calcium in Ca2SiO4 to generate Ca(OH)2 and decomposed into CaO at a high temperature. The two newly formed species participated in the phosphate removal. The MS-CGCS adsorbent showed good phosphate removal performance over a wide pH range, with a maximum phosphate adsorption capacity of 50.14 mg/g, which was significantly higher than that of other reported adsorbents. The Langmuir and pseudo-second-order models described the adsorption process well, indicating it being a monolayer and chemisorption process. The main mechanisms of phosphate removal are as follows: electrostatic interaction between the positively charged MS-CGCS and negatively charged phosphate ions; the inner-sphere complexation of oxides of metal, such as magnesium, aluminum, and calcium, with phosphate ions; and the precipitation of phosphate ions with calcium ions. Precipitation contributes to ~ 32% of the phosphate removal. This study provides a new method for the development of phosphate adsorbents while recycling CGCS and MS.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Magnesio , Carbón Mineral , Calcio , Hidróxido de Sodio , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda