Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Nano Lett ; 24(33): 10337-10347, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39120122

RESUMEN

Breast cancer (BC) is the most common tumor worldwide and requires crucial molecular typing for treatment and prognosis assessment. Currently, approaches like pathological staining, immunohistochemistry (IHC), and immunofluorescence (IF) face limitations due to the low signal-to-background ratio (SBR) and high tumor heterogeneity, resulting in a high misdiagnosis rate. Fluorescent assay in the second near-infrared region (NIR-II, 1000-1700 nm) exhibits ultrahigh SBR owing to diminished scattering and tissue autofluorescence. Here, we present a NIR-II strategy for accurate BC molecular typing and three-dimensional (3D) visualization based on the atomically precise fluorescent Au24Pr1 clusters. Single-atom Pr doping results in 3.9-fold fluorescence enhancement and long-term photostability. The Au24Pr1 clusters possess high fluorescence centered at ∼1100 nm and the SBR on pathological section diagnosis was 4 times higher than that of NIR-I imaging. This enables high spatial resolution 3D visualization of biopsy specimens, which can surmount tissue heterogeneity for clinical diagnosis of BC.


Asunto(s)
Neoplasias de la Mama , Imagenología Tridimensional , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Oro/química , Colorantes Fluorescentes/química
2.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619329

RESUMEN

Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 µM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.

3.
J Antimicrob Chemother ; 79(8): 1951-1961, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38863365

RESUMEN

OBJECTIVES: Pseudomonas aeruginosa and Acinetobacter baumannii are ranked as top-priority organisms by WHO. Antimicrobial peptides (AMPs) are promising antimicrobial agents that are highly effective against serious bacterial infections. METHODS: In our previous study, a series of α-helical AMPs were screened using a novel multiple-descriptor strategy. The current research suggested that S24 exhibited strong antimicrobial activity against major pathogenic bacteria, and displayed minimal haemolysis, good serum stability and maintained salt resistance. RESULTS: We found that S24 exerted an antimicrobial effect by destroying outer membrane permeability and producing a strong binding effect on bacterial genomic DNA that inhibits genomic DNA migration. Furthermore, S24 exerted a strong ability to promote healing in wound infected by P. aeruginosa, A. baumannii and mixed strains in a mouse model. CONCLUSIONS: Overall, S24 showed good stability under physiological conditions and excellent antimicrobial activity, suggesting it may be a potential candidate for the development of serious bacterial infection treatment.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Infección de Heridas , Acinetobacter baumannii/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Ratones , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Modelos Animales de Enfermedad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , ADN Bacteriano/genética
4.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38557019

RESUMEN

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/toxicidad , Oro/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
5.
Opt Lett ; 49(15): 4401-4404, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090944

RESUMEN

In this work, we unveil a novel, to the best of our knowledge, AI-based design method (AIDN1) specifically developed for photonic crystal resonator designs, capable of handling complex designs with over 10 degrees of freedom (DoFs) and considering practical fabrication uncertainties to minimize the common simulation-to-reality (sim2real) gap. Especially, we introduce an ultrashort (<5 µm) curved nanobeam resonator, which obtains an ultrahigh theoretical quality factor (Q-factor) of 2 × 107 and maintains a theoretical Q-factor above 105 even under high fabrication variations. Importantly, we emphasize that AIDN1 is generalizable and our work serves as a solid foundation for future laser fabrication endeavors beyond the realm of ultrashort 1D photonic crystal (PhC) resonators.

6.
Chemistry ; : e202402247, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923595

RESUMEN

Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.

7.
Chemistry ; : e202402806, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180461

RESUMEN

Tunable luminescence-assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare-earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as hydrogen-bonded organic framework (HOF) phosphorescence Förster resonance energy transfer to RE compound luminescence. This work introduces a one-pot, in situ pyrolytic condensation method, achieved through high-temperature melting calcination, to synthesize lanthanide ion-doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine-tuning the doping amount, the composite material U-Tb-100 achieves green LPL with a luminescent quantum yield of 56.4%, and an LPL duration of approximately 2-3 s, demonstrating tunable persistence. Single-crystal X-ray diffraction, spectral analysis, and theoretical calculation unveil that U-Tb-100 exhibits exceptional quantum yield and long-lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials.

8.
Nutr Cancer ; : 1-8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160664

RESUMEN

OBJECTIVE: To investigate the association between sarcopenia, short-term efficacy, and long-term survival in patients with extensive small-cell lung cancer (SCLC) treated with standard first-line immunochemotherapy. METHODS: A total of 63 patients initially diagnosed with extensive-stage small cell lung cancer were enrolled in the prospective study from December 1, 2020 to December 31, 2022. The clinical characteristics, body composition, blood test results, and image data were obtained before treatment. Patients were divided into sarcopenia and non-sarcopenia groups according to the diagnostic criteria of the Asian Sarcopenia Working Group 2019. The primary outcome was overall survival (OS) and comprehensive survival analyses were performed. Secondary outcomes included short-term efficacy and adverse events associated with first-line immunochemotherapy. RESULTS: The median age of the 63 patients enrolled in our study was 63.0 years (40-80 years). The incidence of sarcopenia was 19.0% (12/63) in patients with extensive SCLC. Compared with non-sarcopenia patients, extensive-stage SCLC patients with sarcopenia were significantly older (69.0 vs. 62.0, P = 0.017), and had lower body mass index (BMI) (20.29 vs. 24.27, P < 0.001), hand grip strength (HGS) (20.42 vs. 30.75, P < 0.001), and albumin (35.9 vs. 41.40, P < 0.001). The objective response rate after two cycles of standard first-line immunochemotherapy in the sarcopenia group was lower than in the non-sarcopenia group (30.0 vs. 78.9%, P = 0.012). There was no significant difference in chemotherapy-related hematological toxicity between the two groups. During a median follow-up of 15 months (3-33 months), patients with extensive SCLC had a median OS of 24 months, with 1-year survival of 75% and 2-year survival of 52%, respectively. Compared to non-sarcopenia patients, the median OS in the sarcopenia group was significantly shorter (9 vs. 24 months, P = 0.0014). Multivariate Cox analysis showed that sarcopenia was an independent risk factor for OS in patients with extensive SCLC (HR = 4.993, 95%CI = 1.106-22.538, P = 0.037). CONCLUSIONS: Patients with Extensive SCLC and sarcopenia had worse clinical outcomes and shorter OS. Sarcopenia is a prognostic factor affecting first-line treatment efficacy and long-term survival of patients with SCLC in the era of immunotherapy.

9.
J Sleep Res ; : e14168, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380761

RESUMEN

Perioperative sleep disturbance may increase delirium risk. However, the role of perioperative sleep disturbance in delirium following total joint arthroplasty remains unclear. This prospective cohort study aimed to observe the delirium risk in patients with sleep disturbances. After excluding pre-existing sleep disturbances, older patients scheduled for total joint arthroplasty from July 17, 2022, to January 12, 2023, were recruited. Preoperative sleep disturbance or postoperative sleep disturbance was defined as a Chinese version of the Richards-Campbell Sleep Questionnaire (RCSQ) score of <50 during hospitalisation. A cut-off score of 25 was used to classify the severity of sleep disturbance. The primary outcome was the incidence of postoperative delirium. In all, 11.6% of cohort patients (34/294) developed delirium. After multivariate analysis, a preoperative Day 1 RCSQ score of ≤25 (odds ratio [OR] 3.62, 95% confidence interval [CI] 1.19-10.92; p = 0.02), occurrence of sleep disturbances (OR 2.76, 95% CI 1.19-6.38; p = 0.02) and RCSQ score of ≤25(OR 2.91, 95% CI 1.33-6.37; p = 0.007) postoperatively were strong independent predictors of delirium. After sensitivity analysis for daily delirium, a postoperative Day 1 RCSQ score of ≤25 (OR 9.27, 95% CI 2.72-36.15; p < 0.001) was associated with a greater risk of delirium on postoperative Day 1, with a reasonable discriminative area under the curve of 0.730. We concluded that postoperative but not preoperative sleep disturbances may be an independent factor for delirium risk. Sleep disturbance on the first night after surgery was a good predictor of subsequent delirium, no matter the nature of self-reported sleep disturbance.

10.
J Org Chem ; 89(6): 3894-3906, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385785

RESUMEN

Monodentate chelation-assisted direct ortho-C-H sulfonylation of (hetero)arenes using TosMIC as the novel sulfonylating reagent has been developed. A broad range of substrates, including indolines, indoles, 2-phenylpyridines, and others were well tolerated to afford the corresponding products in moderate to good yields. Mechanistic studies revealed that the sulfonyl radical might be involved. Inspired by the above discovery, preliminary para-C-H sulfonylation of naphthalene substrate was also successfully realized. The current protocol featured with cheap metal catalysis, good functional group compatibility, and operational convenience.

11.
Inorg Chem ; 63(2): 1188-1196, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38175718

RESUMEN

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention from researchers due to their potential applications in information encryption, anticounterfeiting technology, and security logic. In contrast to short-lived fluorescent materials, LPL materials offer a visible response that can be easily distinguished by the naked eye, thereby facilitating a much clearer visualization. However, there are few reports on functional LPL MOF materials as probes. In this article, two amino-functional LPL MOFs (VB4-2D and VB4-1D) were synthesized. They both exhibited adjustable fluorescence and phosphorescence from blue to green and from cyan to green, respectively. Notably, the MOFs emitted bright and adjustable LPL upon the removal of the different radiation sources. The basic amino functional groups in the MOFs exhibited acid and ammonia sensitivity, and fluorescence and phosphorescence emission intensities can be burst and restored in two atmospheres, respectively, which can be cycled multiple times. Furthermore, LPL intensity undergoes switching between two different conditions as well, which can be visually discerned by the naked eye, enabling visual sensing of volatiles by LPL. This combination of photoluminescence and the visual LPL switching behavior of acids and bases in functional MOFs may provide an effective avenue for stimulus response, anticounterfeiting, and encryption applications.

12.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126834

RESUMEN

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Antineoplásicos , Camptotecina , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Camptotecina/farmacología , Camptotecina/química , Camptotecina/síntesis química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos
13.
BMC Cardiovasc Disord ; 24(1): 60, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243161

RESUMEN

BACKGROUND: The triglyceride glucose-body mass index (TyG-BMI index) has been suggested as a novel predictor of insulin resistance. However, its predictive value for slow coronary flow phenomenon (SCFP) in patients with ischemia and nonobstructive coronary arteries (INOCA) remains unclear. METHODS: We consecutively recruited 1625 patients with INOCA from February 2019 to February 2023 and divided them into two groups based on thrombolysis in myocardial infarction (TIMI) frame counts (TFCs): the SCFP group (n = 79) and the control group. A 1:2 age-matched case-control study was then performed. The TyG-BMI index was calculated as ln [plasma triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2] × BMI. RESULTS: TyG-BMI index in the SCFP group (218.3 ± 25.2 vs 201.0 ± 26.5, P < .001) was significantly higher than in the normal controls. TyG-BMI index also increased with the number of coronary arteries involved in the SCFP. Multivariate logistic regression analysis showed that TyG-BMI, BMI, and TG were independent predictors for SCFP. Receiver operating characteristic (ROC) curve analysis showed that when the TyG-BMI index was above 206.7, the sensitivity and specificity were 88.6% and 68.5%, respectively, with an AUC of 0.809 (95% CI: 0.756-0.863, P = .027). Combined BMI with TG, the TyG-BMI index had a better predictive value for SCFP than BMI and TG (P < .001). CONCLUSION: The TyG-BMI index was an independent predictor for SCFP in INOCA patients, and it had a better predictive value than BMI and TG.


Asunto(s)
Glucosa , Fenómeno de no Reflujo , Humanos , Índice de Masa Corporal , Glucemia , Vasos Coronarios , Triglicéridos , Estudios de Casos y Controles , Biomarcadores , Isquemia , Fenómeno de no Reflujo/diagnóstico por imagen , Fenómeno de no Reflujo/etiología
14.
Acta Pharmacol Sin ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760544

RESUMEN

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

15.
Eur J Pediatr ; 183(1): 51-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861791

RESUMEN

The effect of renal functional status on drug metabolism is a crucial consideration for clinicians when determining the appropriate dosage of medications to administer. In critically ill patients, there is often a significant increase in renal function, which leads to enhanced drug metabolism and potentially inadequate drug exposure. This phenomenon, known as augmented renal clearance (ARC), is commonly observed in pediatric critical care settings. The findings of the current study underscore the significant impact of ARC on the pharmacokinetics and pharmacodynamics of antimicrobial drugs in critically ill pediatric patients. Moreover, the study reveals a negative correlation between increased creatinine clearance and blood concentrations of antimicrobial drugs. The article provides a comprehensive review of ARC screening in pediatric patients, including its definition, risk factors, and clinical outcomes. Furthermore, it summarizes the dosages and dosing regimens of commonly used antibacterial and antiviral drugs for pediatric patients with ARC, and recommendations are made for dose and infusion considerations and the role of therapeutic drug monitoring. CONCLUSION:  ARC impacts antimicrobial drugs in pediatric patients. WHAT IS KNOWN: • ARC is inextricably linked to the failure of antimicrobial therapy, recurrence of infection, and subtherapeutic concentrations of drugs. WHAT IS NEW: • This study provides an updated overview of the influence of ARC on medication use and clinical outcomes in pediatric patients. • In this context, there are several recommendations for using antibiotics in pediatric patients with ARC: 1) increase the dose administered; 2) prolonged or continuous infusion administration; 3) use of TDM; and 4) use alternative drugs that do not undergo renal elimination.


Asunto(s)
Antibacterianos , Enfermedad Crítica , Humanos , Niño , Enfermedad Crítica/terapia , Antibacterianos/uso terapéutico , Riñón/metabolismo , Pruebas de Función Renal , Eliminación Renal
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 611-618, 2024 Jun 15.
Artículo en Zh | MEDLINE | ID: mdl-38926378

RESUMEN

OBJECTIVES: To investigate the risk factors for bronchopulmonary dysplasia (BPD) in twin preterm infants with a gestational age of <34 weeks, and to provide a basis for early identification of BPD in twin preterm infants in clinical practice. METHODS: A retrospective analysis was performed for the twin preterm infants with a gestational age of <34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020. According to their conditions, they were divided into group A (both twins had BPD), group B (only one twin had BPD), and group C (neither twin had BPD). The risk factors for BPD in twin preterm infants were analyzed. Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins. RESULTS: A total of 904 pairs of twins with a gestational age of <34 weeks were included in this study. The multivariate logistic regression analysis showed that compared with group C, birth weight discordance of >25% between the twins was an independent risk factor for BPD in one of the twins (OR=3.370, 95%CI: 1.500-7.568, P<0.05), and high gestational age at birth was a protective factor against BPD (P<0.05). The conditional logistic regression analysis of group B showed that small-for-gestational-age (SGA) birth was an independent risk factor for BPD in individual twins (OR=5.017, 95%CI: 1.040-24.190, P<0.05). CONCLUSIONS: The development of BPD in twin preterm infants is associated with gestational age, birth weight discordance between the twins, and SGA birth.


Asunto(s)
Displasia Broncopulmonar , Recien Nacido Prematuro , Gemelos , Humanos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/epidemiología , Factores de Riesgo , Recién Nacido , Femenino , Estudios Retrospectivos , Masculino , Edad Gestacional , Peso al Nacer , Modelos Logísticos
17.
J Cell Mol Med ; 27(20): 3065-3074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487001

RESUMEN

The migratory ability of microglia facilitates their rapid transport to a site of injury to kill and remove pathogens. However, the effect of Treponema pallidum membrane proteins on microglia migration remains unclear. The effect of Tp47 on the migration ability and autophagy and related mechanisms were investigated using the human microglial clone 3 cell line. Tp47 inhibited microglia migration, the expression of autophagy-associated protein P62 decreased, the expression of Beclin-1 and LC3-II/LC3-I increased, and the autophagic flux increased in this process. Furthermore, autophagy was significantly inhibited, and microglial cell migration was significantly increased after neutralisation with an anti-Tp47 antibody. In addition, Tp47 significantly inhibited the expression of p-PI3K, p-AKT, and p-mTOR proteins, and the sequential activation of steps in the PI3K/AKT/mTOR pathways effectively prevented Tp47-induced autophagy. Moreover, Tp47 significantly inhibited the expression of p-FOXO1 protein and promoted FOXO1 nuclear translocation. Inhibition of FOXO1 effectively suppressed Tp47-induced activation of autophagy and inhibition of migration. Treponema pallidum membrane protein Tp47-induced autophagy and inhibited cell migration in HMC3 Cells via the PI3K/AKT/FOXO1 pathway. These data will contribute to understanding the mechanism by which T. pallidum escapes immune killing and clearance after invasion into the central nervous system.

18.
J Neurophysiol ; 130(3): 475-496, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37465897

RESUMEN

As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.


Asunto(s)
Neuronas , Neuronas/fisiología
19.
Biochem Biophys Res Commun ; 639: 9-19, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36463761

RESUMEN

Wound healing is a complex biological process involving multiple cell types with their critical functions. The diabetic wounds show delayed wound healing, while the anagen wounds display accelerated wound closure. However, the mechanisms underlying the effect of cellular heterogeneity on wound healing are still unclear. CD34+ cells exhibit high heterogeneity in wound skins and improve wound healing. Herein, we investigated the phenotypic and functional heterogeneity of CD34+ cells in normal, anagen, and diabetic wounds. We obtained CD34 lineage tracing mice, constructed distinct wound models, collected CD34+ cells from wound edges, and performed single-cell RNA sequencing. We identified 10 cell clusters and 6 cell types of CD34+ cells, including endothelial cells, fibroblasts, keratinocytes, neutrophils, macrophages, and T cells. 5 subclusters were defined as fibroblasts. The CD34+ fibroblasts C2 highly expressed papillary fibroblastic markers took up the largest proportion in anagen wounds and were associated with inflammation and extracellular matrix. Increased CD34+ endothelial cells, fibroblasts C4, and neutrophils as well as decreased fibroblasts C1 were discovered in diabetic wounds. We also filtered out differentially expressed genes (DEGs) of each cell cluster in anagen wounds and diabetic wounds. Functional enrichment analysis was performed on these DEGs to figure out the enriched pathways and items for each cell cluster. Pseudotime analysis of CD34+ fibroblasts was next carried out indicating fibroblast C4 mainly with low differentiation. Our results have important implications for understanding CD34+ cell type-specific roles in anagen and diabetic wounds, provide the possible mechanisms of wound healing from a new perspective, and uncover potential therapeutic approaches to treating wounds.


Asunto(s)
Diabetes Mellitus , Células Endoteliales , Ratones , Animales , Cicatrización de Heridas , Queratinocitos , Análisis de la Célula Individual , Fibroblastos
20.
Small ; 19(29): e2300009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36964988

RESUMEN

Three-dimensional (3D) structures constructed via coordination-driven self-assemblies have recently garnered increasing attention due to the challenges in structural design and potential applications. In particular, developing new strategy for the convenient and precise self-assemblies of 3D supramolecular structures is of utmost interest. Introducing the concept of self-coordination ligands, herein the design and synthesis of two meta-modified terpyridyl ligands with selective self-complementary coordination moiety are reported and their capability to assemble into two hourglass-shaped nanocages SA and SB is demonstrated. Within these 3D structures, the meta-modified terpyridyl unit preferably coordinates with itself to serve as concave part. By changing the arm length of the ligands, hexamer (SA) and tetramer (SB) are obtained respectively. In-depth studies on the assembly mechanism of SA and SB indicate that the dimers could be formed first via self-complementary coordination and play crucial roles in controlling the final structures. Moreover, both SA and SB can go through hierarchical self-assemblies in solution as well as on solid-liquid interface, which are characterized by transmission electron microscope (TEM) and scanning tunneling microscopy (STM). It is further demonstrated that various higher-order assembly structures can be achieved by tuning the environmental conditions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda