Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Cell Proteomics ; 10(4): M110.001750, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21149613

RESUMEN

Embryonic stem cells are pluripotent and capable of unlimited self-renewal. Elucidation of the underlying molecular mechanism may contribute to the advancement of cell-based regenerative medicine. In the present work, we performed a large scale analysis of the phosphoproteome in mouse embryonic stem (mES) cells. Using multiplex strategies, we detected 4581 proteins and 3970 high confidence distinct phosphosites in 1642 phosphoproteins. Notably, 22 prominent phosphorylated stem cell marker proteins with 39 novel phosphosites were identified for the first time by mass spectrometry, including phosphorylation sites in NANOG (Ser-65) and RE1 silencing transcription factor (Ser-950 and Thr-953). Quantitative profiles of NANOG peptides obtained during the differentiation of mES cells revealed that the abundance of phosphopeptides and non-phosphopeptides decreased with different trends. To our knowledge, this study presents the largest global characterization of phosphorylation in mES cells. Compared with a study of ultimately differentiated tissue cells, a bioinformatics analysis of the phosphorylation data set revealed a consistent phosphorylation motif in human and mouse ES cells. Moreover, investigations into phosphorylation conservation suggested that phosphoproteins were more conserved in the undifferentiated ES cell state than in the ultimately differentiated tissue cell state. However, the opposite conclusion was drawn from this conservation comparison with phosphosites. Overall, this work provides an overview of phosphorylation in mES cells and is a valuable resource for the future understanding of basic biology in mES cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Antígenos de Diferenciación/metabolismo , Diferenciación Celular , Línea Celular , Bases de Datos de Proteínas , Células Madre Embrionarias/citología , Humanos , Ratones , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional
2.
J Biol Chem ; 286(32): 28403-13, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21700709

RESUMEN

One of the master regulators of adipogenesis and macrophage function is peroxisome proliferator-activated receptor-γ (PPARγ). Here, we report that a deficiency of ß-arrestin-1 expression affects PPARγ-mediated expression of lipid metabolic genes and inflammatory genes. Further mechanistic studies revealed that ß-arrestin-1 interacts with PPARγ. ß-Arrestin-1 suppressed the formation of a complex between PPARγ and 9-cis-retinoic acid receptor-α through its direct interaction with PPARγ. The interaction of ß-arrestin-1 with PPARγ repressed PPARγ/9-cis-retinoic acid receptor-α function but promoted PPARγ/nuclear receptor corepressor function in PPARγ-mediated adipogenesis and inflammatory gene expression. Consistent with these results, a deficiency of ß-arrestin-1 binding to PPARγ abolished its suppression of PPARγ-dependent adipogenesis and inflammatory responses. These results indicate that the regulation of PPARγ by ß-arrestin-1 is critical. Furthermore, in vivo expression of ß-arrestin-1 (but not the binding-deficient mutant) significantly repressed adipogenesis, macrophage infiltration, and diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Therefore, our findings not only reveal a molecular mechanism for the modulation of obesity by ß-arrestin-1 but also suggest a potential tactical approach against obesity and its associated metabolic disorders.


Asunto(s)
Adipogénesis/fisiología , Arrestinas/metabolismo , Regulación de la Expresión Génica/fisiología , PPAR gamma/metabolismo , Animales , Arrestinas/genética , Dieta/efectos adversos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , Unión Proteica , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , beta-Arrestina 1 , beta-Arrestinas
3.
J Biol Chem ; 286(32): 28396-402, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21543334

RESUMEN

Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that ß-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding ß-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In ß-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, ß-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of ß-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that ß-arrestin-1 plays a role in metabolism regulation.


Asunto(s)
Tejido Adiposo/metabolismo , Arrestinas/metabolismo , Grasas de la Dieta/efectos adversos , Ingestión de Alimentos , Metabolismo de los Lípidos , Obesidad/metabolismo , Animales , Arrestinas/genética , Peso Corporal , Grasas de la Dieta/farmacología , Insulina/genética , Insulina/metabolismo , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , beta-Arrestina 1 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda